

Deliverable D11(1):
Common requirements
analysis, specification
and evaluation of
DataMiningGrid
interfaces and services

DATA MINING TOOLS AND SERVICES
FOR GRID COMPUTING ENVIRONMENTS

Deliverable D11(1): Common requirements
analysis, specification and evaluation of
DataMiningGrid interfaces and services

Responsible author(s): Vlado Stankovski, Jernej Trnkoczy
Co-author(s): Markus Ackermann, Nataša Atanasova, Werner

Dubitzky, Jürgen Franke, Thomas Hunniford, Jörg
Kindermann, Boris Kompare, Nahum Korda,
Valentin Kravtsov, Michael May, Nataša Fidler Mis,
Thomas Niessen, Gerhard Paaß, Matthias Röhm,
Assaf Schuster, Martin Swain, Ran Wolff

Project funded by the European Community under the
"Information Society Technology" Programme Contract IST-
2004-004475

Deliverable D11(1)

Revision history

Deliverable administration and summary
Project acronym: DataMiningGrid ID: IST-2004-004475
Document identifier: DataMiningGrid-del-D11(1)-s-v14
Leading Partner: LJU in collaboration with all Partners
Report version: 14
Report preparation date: 30 November 2004
Classification: Public
Nature: Report
Author(s) and contributors: Vlado Stankovski, Jernej Trnkoczy (LJU) in
collaboration with all Partners
Status: Plan
 Draft
 Working
 Final
 X Submitted
 Approved

The DataMiningGrid © Consortium has addressed all comments received, making
changes as necessary. Changes to this document are detailed in the change log
table below.

Date Edited by Status Changes made
- DoW Plan "a report template will be defined that

all reports will follow"
03.10.2004 jt draft Original proposal - formatting
12.10.2004 vs draft Added contents
14.10.2004 jt draft Added data in headers and footers
19.11.2004 jt draft Modified sections, added contents
22.11.2004 vs working Release for Partner comments
24.11.2004 jt working Partner comments included
28.11.2004 vs working Release for final comments
30.11.2004 jt final Final comments included
30.11.2004 vs final Checked for consistency, finalized
30.11.2004 vs final Approved by Quality Manager
30.11.2004 wd submitted Submitted by Project Co-ordinator

Note that other documents may supersede this document. A list of newest public
DataMiningGrid deliverables can be found at the
http://www.DataMiningGrid.org/dissemination .

Deliverable D11 shall be released in Months 3, 9 and 24 so the deliverable
numbers shall be D11(1), D11(2) and D11(3)).

Report version is the version of the document – that is the number ranging
from 01 to 99. The version starts at the beginning (number 01) when the
document status changes.

Page 3/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.datamininggrid.org/dissemination

Deliverable D11(1)

Classification of the document can be of following: PU (Public), PP (Restricted
to other program participants), RE (Restricted to a group specified by the
Consortium) or CO (Confidential, only for members of the consortium).
Deliverable classification for each deliverable is defined in DoW.

Nature of the deliverable is R(Report), P(Prototype), D(Demonstrator), O(Other)
and is defined in DoW for each deliverable.

Status of a document can be: Draft (issued for contributions from Partners),
Working (issued for comments), Final (approved by deliverable quality manager=
person responsible for that particular deliverable), Submitted (approved by
project quality manager and submitted to European Commission), Approved
(approved by European Commission).

Copyright

This report is © DataMiningGrid Consortium 2004. Its duplication is allowed only
in the integral form for anyone's personal use for the purposes of research or
education. Citation should always be provided.

Citation

Vlado Stankovski, Jernej Trnkoczy (2004) et al. Deliverable D11(1).
DataMiningGrid© Consortium, University of Ljubljana, www.DataMiningGrid.org

Acknowledgements

The work presented in this document has been conducted in the context of the
project IST 2004 004475 DataMiningGrid. DataMiningGrid is a 24-month
project that started on September 1st, 2004 and is funded by the European
Commission as well as by the industrial Partners. Their support is appreciated.

The Partners in the project are University of Ulster (UU), Fraunhofer Institute for
Autonomous Intelligent Systems (FHG), DaimlerChrysler (DC), Israel Institute of
Technology (TECHNION) and University of Ljubljana (LJU). The content of this
document is the result of extensive discussions within the DataMiningGrid©
Consortium as a whole. This report owes to a collaborative effort of the above
organizations.

More information

Public DataMiningGrid reports are available through DataMiningGrid public web
site www.DataMiningGrid.org.

Page 4/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Executive summary

This document specifies technical requirements and the goals for the
development of DataMiningGrid tools and services. It also specifies possible
usage scenarios with the purpose of establishing more detailed technical
requirements1. The individual parts of deliverable D11 are collected in a single,
coherent requirements document that will be a major input for the system and
component design.

The Partners identified and elaborated DataMiningGrid requirements in the
following areas:

 Identifying (locating) DataMiningGrid resources by using metadata,
 Accessing and selecting subsets of data,
 Data transfer,
 Data (pre-) processing,
 Data mining tasks,
 Text mining and ontology learning,
 Workflow editing and submission,
 Data privacy, security and governance,
 Integration of domain knowledge,
 Grid infrastructure and middleware functionality,
 Usability, response times and user-friendliness.

All individual tasks relating to requirements analysis and specification have
contributed to this joint deliverable; therefore, D11 is the product of the
following tasks:

 Task T12: Common requirements specification;
 Task T21: Requirements analysis for data access, transfer, and

manipulation and
 Tasks T61-T64, that is demonstration tasks contributed by all Partners.

D11 has been composed from contributions by all Partners.

1 End-users specific requirements will be elaborated in deliverable D61.

Page 5/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Table of contents

Executive summary... 5

Table of contents .. 6

1 Introduction ... 8

1.1 Grid computing and data grid systems ... 8

1.2 State of the art in grid computing.. 9

1.3 Research and development challenges ... 10

1.4 DataMiningGrid underlying philosophy.. 11

2 Representative use cases ... 13

2.1 Genetic algorithms for gene regulatory reengineering....................... 13

2.2 Information integration of life science data: an integrated approach to
protein subcellular localization prediction... 13

2.3 Text mining use cases ... 14

2.4 Grid monitoring use cases .. 15

2.5 Data mining distributed medical databases 16

2.6 Ecological modelling use cases.. 17

3 Requirements... 19

3.1 Identifying (locating) DataMiningGrid resources by using metadata 19

3.2 Requirements concerning data privacy, security and governance 21

3.3 Accessing and selecting data .. 22

3.4 Data transfer.. 24

3.5 Data (pre-) processing... 25

3.6 Data mining tasks ... 26

3.7 Text mining & ontology learning.. 27

3.8 Workflow editing and submission... 27

Page 6/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

3.9 Requirements concerning integration of domain knowledge............... 28

3.10 Grid infrastructure and middleware requirements 28

3.11 Usability, response times and user-friendliness............................. 30

4 Objectives – research goals beyond the scope of the project 31

5 Conclusions and future work... 34

6 References... 35

Appendix A: Applications description.. 38

Appendix B: Detailed schematic use cases descriptions 51

Page 7/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

1 Introduction

The need for data mining in grid computing environments is motivated by
describing several representative use cases. Some of these use cases are based
on efforts currently under way in industry and academia, others demonstrate
more long-term possibilities.

Section 3: Requirements presents a set of features that should be present and
gives motivations for those features. Section 4: Objectives – Research Goals
Beyond the Scope of the DataMiningGrid Project describes a list of features that
might be useful for many use cases, but may not necessarily be addressed by
the DataMiningGrid project.

The detailed specification of the DataMiningGrid interfaces will take into
consideration:

 The requirements that are contained in this document,
 Review comments on this document from public feedback, invited experts

and working group members,
 Specifications of (or proposals for) grid data mining tools and services that

meet many of these requirements,
 DataMiningGrid requirements recognized by other projects from the

concertation framework of the same strategic objective “Grids for Complex
Problem Solving”, such as the SIMDAT, inteliGrid and other.

1.1 Grid computing and data grid systems

Grid computing could be viewed as a generic enabling technology for distributed
computing. It is based on a hardware and software infrastructure that provides
dependable, consistent, pervasive and inexpensive access to computing
resources anywhere and anytime. In their basic form, these resources provide
raw compute power (CPU cycles) and massive storage capacity (magnetic disk or
other mass storage devices) [Fos99]. These two Grid dimensions were originally
dubbed Computational Grid and Data Grid, respectively. However, since the
inception of Grid technology [Bax02], the term resource has evolved to cover a
wide spectrum of concepts, including “physical resources (computation,
communication, storage), informational resources (databases, archives,
instruments), individuals (people and the expertise they represent), capabilities
(software packages, brokering and scheduling services) and frameworks for
access and control of these resources (OGSA - Open Grid Services Architecture,
The Semantic Web)” [Fos02]. Using a Grid to share resources, researchers and
small enterprises can gain access to resources they cannot afford otherwise.
Research institutes, on the other hand, can leverage their investment in research
facilities by making them available to many more scientists.

Initially, the research community’s focus was placed on Computational Grids.
These have today reached maturity. Toolkits such as Globus [Globus04],
UNICORE [Rom02], Condor [Condor04], and AVAKI [Avaki04] offer a wide range
of services starting from job management, data transfer (for input and output),

Page 8/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

and various security primitives such as authorization and secure channels. Built
on top Globus services, a number of Data Grid projects were initiated about three
years ago. The most notable of these is the EU-funded DataGrid project (initiated
2001) [DataGrid04].

Current Data Grid systems offer good solutions for file-based data access and
data management problems: they allow a client to locate data, select data, takes
care of data replication, etc. However, many scientific and commercial
applications are highly dependent on data stored in more complex database
management systems, providing more sophisticated access and processing of
data. Therefore, recent research has been focusing on (semantic) Grid database
access and integration services [GGF04], notably the DAIS standard (see below).
These developments and the ever-increasing need to exploit the growing
amounts of data across many sectors, give now rise to the development of
generic Grid infrastructure (protocols, services, systems, tools) facilitating the
automated analysis and interpretation of large and inherently distributed data.
However, distributed, Grid-enabled environments imply new levels of complexity
along conceptual, technical, legal, ethical, and other dimensions (see section 3
on research and development challenges).

1.2 State of the art in grid computing

In many of today’s distributed computing applications, the idea of a stateful (as
opposed to stateless) process is extremely important. Data values, and the
results of operations on those values, must persist (i.e. maintain their
informational state over certain periods of time). Given the inherent
heterogeneity of modern platforms, maintaining state is a non-trivial concept,
resulting in the development of standards in the area. The idea of web services
has emerged to address heterogeneous distributed computing based on existing
Internet-based standards (e.g. XML)[Fos04]. Based on this concept, the Open
Grid Services Architecture (OGSA) [Fos02] was developed to provide a consistent
manner for describing services in Grid Environments. The Open Grid Services
Infrastructure (OGSI) is one implementation of this architecture, which is now
being reworked under the Web Services Resource Framework. Computational
resources, storage resources, databases and programs can all be considered as
services. Typically, the development of a standard in any computer application
area is two-fold. It involves

1. The definition of service interfaces and
2. The definition of protocols to invoke these interfaces.

In the area of data management the Data Access and Integration Services
(DAIS) [GGF04] working group, as part of the Global Grid Forum, aims to
develop and promote standards for accessing data across Grids with an emphasis
on existing systems. OGSA-DAI is a collaborative program developed with the
aim of meeting the needs of the UK e-Science community by producing an open
source database access and an integration middleware for Grid applications.
While it developed separately from DAIS, it aims to be fully compliant with the
standards developed by them. As data access in data mining applications is of

Page 9/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

fundamental importance the output from DAIS and OGSA-DAI are relevant to all
data mining services that will be developed under the DataMiningGrid project.

Although the OGSI/OGSA standards have helped to provide grid-based services,
several criticisms have been made with regards to its usability. Perhaps one of
the most significant criticism is that it is too object-oriented and in violation of
the “pure” the web services concept (on which it was originally based). Pure web
services are supposed to have no associated state or instances. As a result, the
OGSI architecture is moving towards the Web Services Resource Framework
(WSRF) [Czaj04]. This framework, initially inspired by OGSI, basically
restructures OGSI concepts to fit more closely with the current web services
architecture. Due to fundamental changes in the exchange of messages between
the two approaches, WSRF-compliant services will not interoperate with OGSI
services.

Much effort is made by both the scientific and business communities to develop
standard grid middleware, allowing for easy development of grid-enabled
applications and ensuring their interoperability. However with the emergence of
the OGSA standards, calling for the web services-based approach, there is much
confusion and feeling of uncertainty among the grid researches and developers.

The Globus Toolkit 3.0, an OGSI based descendant of the widely adopted Globus
Toolkit 2.x, required significant refactoring of the working grid environments.
However recent dramatic changes of OGSI towards further integration with Web
Services (WSRF) render the previous work unusable. Such unexpected change in
the core of the grid middleware makes it unclear how the latest developments
will impact other standards and the whole standardization process at GGF.
Currently, the grid interoperability standard is WS-I+.

One of the tough challenges faced by any grid-related project today is to
maintain a consistent picture of the latest developments and to comply with the
constantly evolving new standards. “gridification” of services will need to take
onboard and adhere to existing and emerging grid data mining standards, such
as those discussed in the next section.

1.3 Research and development challenges

As a result of the unprecedented technological advances in recent years,
fundamentally new, intrinsically distributed complex problem solving
environments are emerging. These developments are prompting a range of new
data mining research and development problems.

These can be classified into the following broad challenges:

 Distributed data. The data to be mined are increasingly stored in
distributed computing environments on heterogeneous platforms.
Consequently, development of algorithms, tools, and services is required
that facilitate the mining of inherently distributed data within complex
problem solving environments.

Page 10/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

 Distributed operations. Emerging grid computing environments will see
more and more data mining operations and algorithms be made available
on the grid. To facilitate a seamless integration of these resources into
distributed data mining systems for complex problem solving, novel
algorithms, tools, grid services and other IT infrastructure need to be
developed.

 Massive data. Development of algorithms and systems for mining large,
massive and high-dimensional data sets (out-of-memory, parallel, and
distributed algorithms) is needed, as more and more data mining
problems in complex problem solving environments are faced with giga-
and tera-scale data sets.

 Data types. The phenomena analysed in complex problem solving
scenarios are captured in increasingly complex data sources, structures,
and types, including natural language text, images, time series, multi-
relational and object data types. grid-enabled mining these data will
require the development of new methodologies, algorithms, tools, and grid
services.

 Data privacy, security, and governance. Automated data mining within
distributed computing data Grids raises serious issues in terms of data
privacy, security, and governance. Related issue involve ethical and legal
aspects, good practices, and audits. grid-based data mining technology
will need to support researchers and analysts in using the data mining
tools and services in a legal, ethical, secure, privacy-preserving, and
auditable way.

 Domain knowledge. The data to be mined in complex problem solving
scenarios will increasingly require the integration of existing domain
knowledge into the mining process, particularly in knowledge-intensive
domains. This knowledge is often dispersed across geographically
distributed sites and organisations, either in digital form (ontologies,
metadata, knowledge-based or simulation systems) or provided
interactively by human experts. grid-enabled data mining technology will
need to provide services and tools to support knowledge-aided data
mining. (see also last bullet point).

 User-friendliness. Ultimately, data mining in a distributed grid
computing environment must hide technological grid details from the user.
To facilitate this, new software, tools, and infrastructure development is
needed in the areas of grid-supported workflow management, resource
identification, allocation, and scheduling, and user interfaces.

 Resource identification and metadata. A key characteristic of
emerging grid-based complex data mining environments is that data sets,
data mining operations and relevant domain knowledge resources will be
dispersed around a potentially very large number of sites and nodes.
Powerful metadata services resource identification tools and systems are
required to navigate, select, and use the available resources effectively.

1.4 DataMiningGrid underlying philosophy

The underlying philosophy (approach) of the project is depicted in Figure 1. The
Consortium decided to use a so-called “three legged stool” methodology for

Page 11/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

project development process. This methodology basically consists of three main
concepts:

 Use-case-driven process – all the stages in the process are driven by use
cases,

 Architecture-centric – architecture has to be outlined at a very early stage
of the project and it evolves over time,

 Iterative process of improvements of the various models (use case model,
requirements model, analysis model, and design model). In the
DataMiningGrid project we improve these models at least in three
iterations.

The requirements are chosen based on the aspects of the use cases that the
Consortium considered most important. As such, one should not assume that
that the DataMiningGrid components will directly support every aspect of the use
cases.

Figure 1: DataMiningGrid underlying philosophy

Page 12/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

2 Representative use cases

DataMiningGrid can be used to improve existing data mining techniques and may
enable new uses of data mining on the grid. In this section we describe some
representative use cases. Note that this is not an exhaustive list, but instead a
cross-section of interesting use cases. These use cases will serve as a guideline
in choosing requirements for the DataMiningGrid tools and services.

2.1 Genetic algorithms for gene regulatory reengineering

A genetic algorithm is used to model a natural phenomenon; gene regulatory
networks will be simulated in silico on the grid in order to discover the genetic
configuration that reproduces observations made by in vivo biological
experiments.

Many different genetic networks will need to be computationally simulated, and
the genetic algorithm will be used to design and evolve these network
simulations so that the optimum network configuration is discovered. Here the
optimum network is the network that best reproduces the observations
generated by a real, biological genetic network. Having access to large
computational resources will be essential for this demonstrator, as the search
space is vast, and the more simulations that can be run, the better will be the
search through the possible genetic configurations.

Each genetic network simulation can be run independently of the others, and so
a batch scheduling system such as Condor, that can access the computational
power of idle machines, would be excellent for this use case. The simulations can
be distributed over a cluster of machines running Condor, and the data produced
by the simulations will need to be collected and processed by the genetic
algorithm, which will then evolve new simulations based on the previous
simulations. Finally, the optimum genetic network configuration will be presented
to the user.

2.2 Information integration of life science data: an
integrated approach to protein subcellular
localization prediction

To investigate natural phenomenon from the bioinformatics area there is great
need to access data in multiple databases, which all have significant syntactic,
technological and semantic heterogeneity. DataMiningGrid mechanisms will be
used to facilitate this process, and in particular they will be used to integrate two
databases containing information that can be used to predict proteins’ locations
within a cell’s subcellular compartments.

In this use case the main challenge for the DataMiningGrid will be integrating
heterogeneous data sources for data mining. To allow for effective data mining,
the data has to be stored and adequately organized; this task will be addressed
by means of data warehouse technology. Data integration using warehousing
technology has already been investigated by UU in the context of this research

Page 13/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

project [Stur03]. Here we will be mostly concerned with semantic heterogeneity
as our biological databases will use different conceptualizations or ontologies to
model data.

Once the biological databases have been integrated, a classification algorithm
will be applied, in this case probably a decision tree, to datasets derived from
these databases.

2.3 Text mining use cases

The text mining use cases described under T61 of the Technical Annex can be
subdivided into the following text mining framework, which is shown in the
picture below (Figure 2. Text mining framework). Three different scenarios are
sketched for a huge (and distributed) collection of electronic texts.

Figure 2. Text mining framework

 Selection (T61.3) – The typical application of search engines to find the
relevant texts for a query, i.e. to select the appropriate text(s).

 Reduction (T61.3) – Finding the relevant passages in documents which
contain the answer to a query.

 Organisation (T61.1) – The building of problem relevant subsets for the
whole collection. Structuring the document collection can be done in two
different ways:
o Classification – The structuring process is done due to a given

categorization scheme and can be done by rules or training by
examples from a given learning set. So the principle structure is given
by a natural categorization scheme or by the human trainer of the
system.

o Clustering – The organization process is done automatically to find
unknown structures in the collection and the main purpose is to detect
the unknown categories of a collection.

In addition to all basic text mining processing steps the subtask Ontology
learning from and for text collections (T61.2) will focus on an important
processing unit for which the grid-enabled version will be very valuable. This
subtask is not a demonstrator for its own, because the usefulness of this

Page 14/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

demonstrator is not self-contained, but is an essential subtask of the other
demonstrators. The learned ontology will support the other subtasks by:

 Improvement of the document representation,
 Improvement of class- and sub-class structure,
o Improved classification and clustering (T61.1),

 Improved representation and annotation of documents,
 Query expansion,
 Enhance passage retrieval,
o Improved retrieval (T61.3).

Specific text mining use cases are therefore as follows:

 Fast distributed text classification for quality management,
 Ontology Learning from and for text collections,
 Finding related and similar documents in the intranet,
 Mining digital libraries,
 Mining civil engineering databases,
 Mining old church Slavic documents.

The use cases displayed under T61 of the Technical Annex provide the building
blocks needed by the text mining use cases T61.1 – T61.3. They deal with the
pre-processing of textual data, document classification, and clustering of
documents. The computations are either performed on a central server, or they
are distributed.

2.4 Grid monitoring use cases

A key problem in the development and operation of distributed systems is that
their behaviour tends to be extremely complex. Traditional monitoring services
are based on gathering local logs in each component of the system and on the
manual, or software assisted, browsing of these logs by experts. This approach
has three basic flaws to it: (1) any centralized approach is necessarily non-
scalable with the number of logs, (2) many interesting events exceed the scope
of a local log (e.g., distributed denial of service attacks) and can only be
detected if all logs are processed and a system-wide picture is obtained, and (3)
in order to maintain reasonable log volumes, the events that are interesting must
be selected a priori; yet, many times an event only becomes interesting in the
context of a given problem, which cannot be predicted.

An alternative approach, which has been tested in small-scale systems, is to use
data mining techniques to look for unknown patterns in the logs. This approach
allows logging many more events, since these will be processed automatically. It
also has the potential to reduce the level of system expertise required from the
operator because the same monitoring tool can be used to extract behavioural
patterns from the logs of different systems. Nevertheless, until today all such
experiments still had two drawbacks: they used centralized data mining
techniques and were, thus, non-scalable, and they used the logging facilities

Page 15/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

supplied by vendors and thus suffered from the need to fuse the data sources
before they can be mined – which is in itself a difficult problem.

In the DataMiningGrid we will investigate a new approach to the monitoring
problem. We will use the data mining toolkit that will be part of DataMiningGrid
to mine logs that will be extracted specifically for this purpose. Since data mining
is integrated with the system, the monitoring task will be distributed. For
instance, we will be able to log much more data locally, because most of that
data will be discarded of immediately and will pose no performance overhead on
the system. This work is expected to have implications for all grid systems

The following generic use case refers to the task T64: Complex Monitoring
Problems of the Workpackage WP6: DataMiningGrid Demonstrators in the
projects Technical Annex (section 7.6.6).

After submitting a grid job it is of critical importance to allow user to monitor its
execution, as well as to constantly diagnose the system. If the system is properly
diagnosed, its performance can be improved by correcting the problems that
occurred during the job execution, or by resubmitting the job to other resources
that function properly. If the job submission was faulty (e.g., due to the
incomplete data), the user can be alerted, and the information necessary for the
correction of the submission can be provided.

Monitoring in the distributed systems is extremely complex since it must combine
information from numerous and diversified resources that simultaneously
execute multiple computational tasks. This is why current distributed systems
offer very little monitoring functionality. The DataGrid [DataGrid04], for example,
developed a monitoring facility called Logging and Bookkeeping that keeps track
of the job submission, and enables querying of the current job execution status.
However, this facility retrieves only a very limited set of predefined job status
descriptions. Moreover, these descriptions are rather cryptic, and contain very
little information regarding the problems that caused job failure, and how it could
be corrected. Actually, a job that was factually not executed due to the
application malfunctioning would be still reported as successful.

It is therefore necessary to provide a significantly more powerful monitoring
functionality integrated into the distributed systems that would allow ongoing
analysis of the system’s condition, and provide critical diagnostic information.

2.5 Data mining distributed medical databases

The medical use case is especially intended to demonstrate the need for privacy
and security when mining a real-world medical problem. Many medical studies
are more relevant if conducted for a greater geographic area. In this particular
use case, endemic goitre and supply with iodine in Slovenian children entering
high school is investigated. The specific scientific objectives of this demonstrator
are (1) to study the prevalence of insufficient supply with iodine, which is
manifested as goitre, among children entering high school in 9 regions of
Slovenia, (2) find out in which regions of Slovenia the prevalence of insufficient
supply with iodine, manifested as goitre, is especially high, (3) to determine, if

Page 16/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

there is a significant difference in nutritional habits between the children with
deficient supply with iodine and their peers from the control group from the same
region in Slovenia, who have adequate iodine supply, and (4) compare
nutritional habits of Slovenian children entering high school with recommended
Central European reference values.

Currently, approximately four thousand children are being recruited in nine
Slovenian regions and the data is collected in several regional databases. The
collected data is being analysed by statistical and data mining approaches. In
this respect, the use case is not concerned with massive data neither it needs
high-performance computing, however scalability is an open issue when mining
larger (distributed) medical databases.

It would be highly beneficial if the data is either not transferred from its original
location (for the purpose of data mining) or they could be transferred in a coded
manner, thus preserving privacy, security and governance, while at the same
time facilitating medical studies on the data.

2.6 Ecological modelling use cases

The ecological modelling use cases are taken from the scientific area of
automated ecological modelling, but could be generalized on any scientific area
that has the need for automated modelling of systems on the basis of knowledge
bases.

Models of dynamic systems are often stated in terms of basic processes that
govern the dynamic behaviour of the observed system. Each basic process
influence the change of one or more system variables, while the model of a basic
process specifies the equations used to model its influence. There are numerous
mathematical formulations (models) for each of the processes in a system. When
setting a model of a system the expert then makes a choice of a suitable
expression that would describe the process best. In automated modelling a
knowledge library can take the experts place by offering a variety of models for
the same process to the equation discovery tool, which then finds one to
describe the system best.

The modelling knowledge is gathered in a library of domain-specific knowledge.
Given a specification of modelling task at hand, which includes specification of
the observed system variables and processes that are expected to influence the
behaviour of the system, we can transform the high-level knowledge from the
library into an operational form of grammar that specifies the space of candidate
models for the observed system. This is illustrated in the left-hand side of Figure
3: An automated modelling framework based on the integration of domain-
specific models. Once we have a grammar, we can use equation discovery
system Lagramge to heuristically search through the space of candidate models,
match each of them to measured data by fitting the values of the constant
parameters, and find the one that fits measurements best. This model is the
output of Lagramge application.

Page 17/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Figure 3: An automated modelling framework based on the integration of
domain-specific models

The ecological use case is concerned with the task of building mathematical
models of ecosystems, in particular population dynamics in aquatic ecosystems.
Population dynamics studies the structure and dynamics of populations, where
each population is a group of individuals of the same species sharing a common
environment (ecosystem). We consider models of the dynamic change of
population concentrations (or densities) that take the form of ordinary
differential equations (ODE or ODE models). There are two main aspects of
building an ODE model of a real-world ecosystem. First, we have to establish an
appropriate ODE structure (the structure identification task). Second, we have to
identify acceptably accurate values for the constant parameters of the ODE
model (the parameter estimation task). Each of these aspects will be
implemented on the grid as a separate computational service. However, a basic
service for simulating ODE models is also necessary, that will allow the user to
simulate and compare behaviours of the different models.

Page 18/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

3 Requirements

The use cases motivate a number of technical requirements for the development
of DataMiningGrid tools and services. The DataMiningGrid Consortium currently
feels that the technical requirements described below are essential to the
DataMiningGrid© technology. Each requirement includes a short description
and is motivated by one or more use case(s) from the previous section.

Functional requirements lists the set of operations that the DataMiningGrid
services and tools must be able to perform in order for the services and tools to
be considered functional. Non-functional requirements are additional criteria
that generally focus on the system properties, such as environmental and
implementation constraints, performance, platform dependencies,
maintainability, extensibility, reliability etc. of the services and tools. Non-
functional requirements are further divided into special (non-functional)
requirements and supplementary (non-functional) requirements. The special
requirements are related to the specific use cases and need to be handled in
subsequent system models, such as the analysis, design and implementation
models. The supplementary requirements are generic requirements and can not
be connected to a particular use case or a particular real world problem. They
should instead be managed separately in a list of supplementary requirements.

The main classes of functionality required by users were identified as:

 Identifying (locating) DataMiningGrid resources by using metadata,
 Accessing and selecting subsets of data,
 Data transfer,
 Data (pre-) processing,
 Data mining tasks,
 Text mining and ontology learning,
 Workflow editing and submission,
 Data privacy, security and governance,
 Integration of domain knowledge,
 Grid infrastructure and middleware functionality,
 Usability, response times and user-friendliness.

3.1 Identifying (locating) DataMiningGrid resources by
using metadata

Functional requirement 1: Provide mechanism for accessing metadata

Rationale: For the client to make decisions about how to handle the data
provided by the data service, it is necessary for the client to access the metadata
associated with the data. There are different forms of metadata. Application
metadata describes properties of primary data that help the user to interpret it.
Technical metadata describes how the primary data is stored in physical
resources.

Page 19/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Initial Assessment: Application metadata would be most useful if provided the
early stages of workflow design. This would suggest that application metadata
should be part of the information supplied by the data service registry.

Technical metadata would mainly be used internally by the data services to
construct data access and mediation workflows.

Motivation: Text mining use cases especially DC Use Case for Subtask T61.3:
Finding related and similar documents in the intranet. Document repositories on
the intranet contain metadata describing the kind, format, up-to-datedness and
accessibility of their data.

Functional requirement 2: Provide mechanism for locating data services

Rationale: Data services are distributed all around the world. Locating all the
required data services using ad-hoc search techniques is unlikely to be
successful. By providing an automatic mechanism for locating data services,
appropriate data services will be found quickly and easily.

Initial Assessment: This requires a data discovery service. Data discovery
services identify data items by matching specified characteristics, attributes, or
meta-data such as:

 A description, summary, or overview of the data source,
 Data provenance: how and where the data was generated i.e. what

scientific instruments were used to collect the data, or what processing
has been applied to the data,

 Who is the creator, the owner, or the last modifier,
 Physical metadata such as the data size, access control policies, transfer

rates, error handling, number of disks, and the number of heads,
 It is also important to identify those data sources that are also available as

computational resources so that data can be analysed at its source.

Discovering data services can be difficult in OGSA because:

 There can be a very large number of data objects to be discovered,
 Data models can be very complicated,
 It can be necessary to model and view various subsets of a dataset.

The semantic grid can be used to develop metadata ontology, and catalogues of
metadata services are used to help locate and discover data.

Motivation: text mining use cases especially DC Use Case for Subtask T61.3:
Finding related and similar documents in the intranet. Identification and location
of document servers/repositories on the intranet which can or have to be
searched.

Page 20/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

3.2 Requirements concerning data privacy, security and
governance

Functional requirement 3: Authenticate request and provide appropriate
feedback.

Rationale: The security of access to data and other resources may be critical for
some applications. It will be necessary to authenticate requests and provide
appropriate feedback. Not all services are public. For those that are not it is
necessary to confirm client identity and to check client access rights. The actions
that the client takes next will depend on knowing if the authentication was
successful or not, so the client requires appropriate feedback.

Initial Assessment: Authentication can be provided via a simple
username/password combination or more elaborate techniques can be employed.
On the other hand, for public access sites, authentication may not be needed at
all.

Many individual datasets may be protected with different authentication
techniques. Any service that provides access to these datasets may not only
have to deal with the heterogeneous nature of data itself but also with
heterogeneous authentication and access procedures.

There may also be restrictions on who can have access to which datasets or
datasets may need to be anonymised (substituting untraceable codes in place of
personal details) in order to ensure that personal information is not revealed.

Motivation:

 These use cases are the text mining from DC and FHG, general data
access cases from UU, and system diagnostics from TECHNION,

 DC text mining use cases: Data and document repositories are distributed
over different business units and departments. This implies different
access policies on the distributed data. Therefore authentication must not
only take place for the provided grid services in general, but the grid
service itself must do authentication on a per server/repository basis.

Nonfunctional requirement 1 (supplementary): Useable from firewall-protected
environments.

Rationale: To protect systems from unauthorized access, many networks make
use of a firewall. This restricts external access to particular ports. Ideally the
data services and tools will not be affected by the restrictions set by a typical
firewall.

Initial Assessment: Most firewalls will allow the HTTP protocol on port 8080
This is sufficient to allow Web access but not allow unauthorized access beyond

Page 21/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

the confines of public directories. Thus any protocol that makes use of port 8080
is likely to be accepted by most firewalls.

Motivation:

 DC text mining use cases: Data and document repositories at DC are
distributed over different business units and company departments. The
DC intranet is not only protected against the internet by a firewall, but
different units within the company intranet are also protected against each
others by firewalls,

 Data mining distributed medical databases use case,
 Ecological use case.

Nonfunctional requirement 2 (supplementary): Use secure, encrypted channels.

Rationale: It may be necessary to pass sensitive information across the
Internet. In such circumstances the information should be encrypted to ensure
that sensitive information remains secure.

Initial Assessment: The inclusion of secure socket layer (SSL) software will
encrypt data traffic to and from the server.

Motivation:

 Text mining use cases from DC,
 Data mining distributed medical databases use case.

3.3 Accessing and selecting data

Functional requirement 4: Initiate data service in response to successful
request

Rationale: Assuming that a data service will be connection-oriented a session is
required that will maintain the current state of the data service.

Initial Assessment: Data services can also be connectionless, like Web servers.
In this case only one instance of the data service is needed, but each request
must be self-contained and include authentication details where necessary. This
means that a single request has the potential to be very complicated. On the
other hand, a connection-oriented data service will maintain a current state, like
FTP. Each individual request is simpler because its context does not have to be
restated every time it is passed to the data service.

Motivation: All use cases.

Page 22/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Functional requirement 5: Data service provides access and mediation services
to one or more datasets

Rationale: A data service may provide access to one or more datasets. The
client application requires a consistent approach to access and handle the data
provided by the data service. A mediation service will provide an integrated view
of distributed data to the client application.

Initial Assessment: Data sources need to have structure in order for them to
be recognized or understood. This structure should be described by metadata.
Data sources are usually file orientated or database orientated. Sources of
datasets include:

 File systems e.g. NFS or AFS as a flat file or collection of flat files such as
ASCII text files that have been formatted according to some clear
convention or documents from which data can be extracted and then
presented in a structured manner,

 Structured or semi-structured XML data,
 Database management systems: particularly relational (e.g. ORACLE or

MySQL),
 Abstract or virtual data that has been derived from a subset of one or

more data sets,
 Directories of grid services i.e. data that is used to describe available

resources, to support the operation of the grid, and to describe its state
and configuration.

Motivation: Most, if not all, use cases will require access to data for mining.

Functional requirement 6: Data service processes basic queries from client

Rationale: The data service must accept queries that allow the client to select
data and perform other basic operations.

Initial Assessment: Users want to access both data and metadata from the
located source(s) and select a data subset for processing or mining. For the
client to make decisions about how to handle the data provided by the data
service, it is necessary for the client to access the metadata associated with the
data. The way in which data is structured will affect the manner in which it can
be accessed:

 Data access can involve both reading data from, and writing data to, a
data source. These operations will be implemented in different ways for
different resources,

 Data access may be needed to update data sources, and to ensure the
consistency of all data replicas,

 Data sources have different access mechanisms:

Page 23/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

o File system based commands like open, close, read, write. Data
subsets can be selected using file processing scripts,

o Relational query mechanisms like SQL, XQUERY, XPATH,
o Mechanisms for hierarchical storage systems.

Diverse sources will result in a diversity of access mechanisms. To enable robust
generic access mechanisms we will want:

 Uniform methods to access a data source e.g. use GridFTP, although it is
also good for multiple mechanisms to exist,

 To be able to transform data amongst the different data types that are
stored in the different data sets,

 To be able to mediate between different data models and database
schemas,

 Federated or virtual databases may be required in order to integrate
various data sources into a transparent global schema. Individual data
sources may still need to be available for direct access,

 Specific views of a data source may need to be provided.

It is often desirable to be able to select a subset of the data accessed from a
data source before it is transferred or stored elsewhere. Data selection may be
an interactive operation and require sophisticated tools to guide the user:

 At the simplest level a data subset can be selected using relational
database query mechanisms,

 At the most complex level there are many different ways of filtering,
combining, or processing data, and these methods can require
sophisticated code to be executed.

Motivation: All use cases.

3.4 Data transfer

Functional requirement 7: Data service must be able to transfer datasets from
one server to another

Rationale: By its very nature the grid is geographically distributed. Therefore, in
order to access the resources available at different locations, it must be possible
to move datasets from one geographical location to another.

Initial Assessment: Moving data requires no knowledge of the data structures.
The basic unit of data transfer and access is:

 Primitives: floats, integers, characters and arrays, images or objects,
 Files: these are uninterrupted sequences of bytes.

Page 24/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

GridFTP is the fundamental data access and transport mechanism and it provides
a uniform interface to different file storage systems. When moving data it is
necessary to consider:

 Maximizing file sharing, minimize replication and to monitor shared file
space i.e. perform garbage collection,

 Dealing with failure and restarting transfers,
 Synchronising updates to all replicas,
 Allowing different types of file transfer:
o The simultaneous transfer of multiple files with each job individually

monitored and managed,
o Reliable data transfer i.e. GridFTP with some enhanced features.

Motivation: All use cases.

3.5 Data (pre-) processing

Functional requirement 8: Include additional functions such as data cleaning
operations and data transformation operations

Rationale: Operations on large amounts of data should be kept as close to the
data as possible in order to reduce data transfer overheads. Ideally such
operations would be integrated with the data services and tools.

Initial Assessment: Additional grid data service functions may execute specific
algorithms on the data, such as filling in missing values or transforming the data
in different ways (such as normalising the data). This can be done more
efficiently by the data service since fewer data transfers are required.

At the extreme level, all the data mining tasks could be performed by the grid
data service. Programs (probably either scripts or Java programs) could be
uploaded to the grid data service and used to perform tasks on the data.

Motivation:

 Genetic algorithms for gene regulatory reengineering use case,
 Information integration of life science data: an integrated approach to

protein subcellular localization prediction use case,
 Text mining use cases,
 Data mining distributed medical databases use case.

Functional requirement 9: Data processing taking place near where data is
located

Rationale: For large amounts of data, there may be high overheads of
transferring the data from where it is store to where it is processed. There might

Page 25/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

also be cases, where the right to move or distribute the data to other servers
may be restricted due to data privacy or copyright reasons. Where possible, as
much processing should take place as near to where the data is located as
possible in order to keep data transfer times to a minimum and to avoid
inconvenience to other users due to the increased traffic caused by data
transfers.

Initial Assessment: Processing data close to its source may be important in
order to:

 Scale computation,
 Reduce the dataset’s size before it is transferred,
 Realize virtual datasets i.e. a new dataset that has been derived in some

way from one or more data sources. These results could then be
accumulated in other data collections: this is similar to virtual data
warehousing,

 Format the dataset (into XML for example) before it is transferred,
 Access and process data which can not be redistributed or transferred,
 Process highly dynamic data, where data changes faster, than transferring

the data to another place would take.

Motivation:

 Text mining use cases: Text data should be converted in place from their
original document format (different binary and proprietary file formats like
MS Word, Powerpoint, PDF, …) to a data format suitable for doing text
mining and retrieval (e.g. ASCII, XML, vector-representation, …). If the
conversion takes place on the data repository, the converted data can be
cached for future queries and analyses,

 Genetic algorithms for gene regulatory reengineering use case,
 Information integration of life science data: an integrated approach to

protein subcellular localization prediction use case.

3.6 Data mining tasks

Functional Requirement 10: Decoupling WEKA components

Rationale: Decoupling WEKA components (data mining services, etc.) for
optimal extensibility and platform/language independence

Initial Assessment: Weka [Weka04] is a widely known and accepted data
mining application, especially in academic and research areas. It contains many
state of the art data mining algorithms. It also provides a workflow editor
capable of creating sophisticated data mining workflows. As this editor
encompassed nearly all data mining algorithms provided in Weka, it is desirable
to have Weka being able to execute on the grid in order to use this editor to its
full extend.

Page 26/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Motivation: Weka’s components can be used to build one integrated system
encompassing demonstrators from several or all Partners. Furthermore, with
Weka being able to execute on the grid users can choose between many more
additional analysis services.

3.7 Text mining & ontology learning

All text-mining demonstrators will be realized on decentralized document sources
and the processing of the documents will also be realized decentralized in a grid
environment. The requirements relating to the “text mining” and “ontology
learning” use cases have already been covered in sections 3.2 to 3.4 (accessing
distributed data services, data preprocessing and transfer).

3.8 Workflow editing and submission

Functional requirement 11: Ability to prepare workflows by graphical editor and
submit workflows for execution

Rationale: Data mining is a complex process consisting of many tasks for pre-
processing, analysis, and visualization. In order to compile these tasks for
automatic execution, a graphical workflow editor providing such capability is
needed. Also such a visual tool will reduce error rates compared to traditional
batch scripting. Furthermore as the workflow editor will not execute the
workflow, it has to be able to submit it to some machine where it is executed.

Initial Assessment: In order to contribute to the system’s usability for end
users the workflow editor has to support various demonstrators while hiding as
many grid specific aspects as possible from end users. This demands for the
editor to provide a generic interface for adding new services during runtime by
using the Data & Analysis Discovery/Location services as explained in functional
requirements #1 and #2 to present available services to the user.

The workflow editor will also perform basic validation of the workflow chain
ensuring syntactical soundness.

These functions require the computational and data services to provide extensive
descriptions about themselves. It has to be carefully evaluated which information
is needed in order to keep data exchange and overall complexity to a minimum
while still ensuring full functionality.

Execution of the workflow is not part of the editor. Therefore, it is necessary to
submit the workflow to some sort of manager, which starts the execution and
monitors the progress.

Motivation: The basic idea is to provide an extensible workflow editor, which
can be used in many demonstrators.

Page 27/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

3.9 Requirements concerning integration of domain
knowledge

Functional requirement 12: Ability to store models in a knowledge base

Rationale: The data to be mined in complex problem solving scenarios will
increasingly require the integration of existing domain knowledge into the mining
process, particularly in knowledge-intensive domains. This knowledge is often
dispersed across geographically distributed sites and organisations, either in
digital form (ontologies, metadata, knowledge-based or simulation systems) or
provided interactively by human experts. grid-enabled data mining technology
will need to provide services and tools to support knowledge-aided data mining.

Initial assessment: Storing formulae in a knowledge database could be highly
beneficial for some machine learning algorithms, e.g. Lagramge.

Motivation: Ecological modelling use case.

3.10 Grid infrastructure and middleware requirements

Functional requirement 13: Middleware able to execute generated workflows
including conditional control flows

Rationale: Data mining is complex process including many sub-tasks. As some
may only be executed if specific conditions are fulfilled and others may be
repeatedly executed a specific number of times, the workflow editor has to
provide conditional control flows.

Initial Assessment: Conditional control flows are essential to the usability of
the workflow editor, especially if this editor is supposed to support several
demonstrators. Without such control flows the workflow editor would only be of
limited use.

Motivation:

 Text mining use cases: Distributed document clustering and training of
classifiers takes place as iterative process, being repeated until a certain
quality criteria is met,

 Ecological use case.

Nonfunctional requirement 3 (supplementary): The DataMiningGrid services and
tools should be compatible with existing grid infrastructure.

Rationale: Using the existing grid infrastructure will reduce development time
and will make implementation and installation quicker and easier. However this
will only be possible if the existing grid infrastructure is capable of supporting the
required services and tools.

Initial Assessment: Where possible, existing protocols (grid interoperability
profile WS-I+) and infrastructure should be used. This may mean compromising

Page 28/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

on some aspects of the project, but will enhance compatibility and reduce the
risk of project failure.

Motivation: All use cases.

Nonfunctional requirement 4 (supplementary): Grid infrastructure, test-bed for
the DataMiningGrid project.

Rationale: Grid infrastructure should be developed by the project Partners for
technology testing purposes.

Initial Assessment: Where possible, existing protocols and infrastructure
should be used. This may mean compromising on some aspects of the project
but will enhance compatibility and reduce the risk of project failure.

Motivation: All use cases.

Functional Requirement 14: Provide monitoring services.

Rationale: Constant system diagnosis is of critical importance in complex,
distributed systems. In such systems it is extremely difficult to track and monitor
job execution, and to understand what causes failures and poor performance. An
effective ongoing analysis of the system’s condition is necessary in order to
enable corrective actions, and improve system’s performance.

Initial Assessment: Ongoing analysis of the system’s condition enables early
detection of the occurring problems, detects points of failure, and exposes
weaknesses that potentially or factually harm the system’s performance. The
corrective actions and the performance improvement based on this analysis need
to be automated to the maximal extent catering for the dynamic and often
unpredictable modifications and alterations occurring in the system. The user
needs to be notified regarding the status of her job submissions, and provided
with the sufficient information to carry out corrective actions, if these are within
her capacity as a user (for example, job resubmission with the complete and
correct data). The system administrator needs to be updated regarding the
reoccurring problems and potential weaknesses, and provided with the sufficient
information to reconfigure the system if necessary.

Motivation:

 Grid monitoring use cases,
 Ecological modelling use case.

Page 29/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

3.11 Usability, response times and user-friendliness

Nonfunctional requirement 5 (supplementary): Data services and tools
response time is within a reasonable time period.

Rationale: The user will wish to know if an operation has succeeded or failed
within a reasonable time period.

Initial Assessment: Response time when client-application connects to a
service should be within seconds (10 seconds is realistic response time for job
submission confirmation. However, resource allocating facilities of the current
distributed systems operate in minutes, rather then seconds. For example, EDG
Resource Broker takes on average 5 minutes to execute a simple echo job).
Response time when client-application sends a query should also be within
seconds in order to inform the user if the query can be processed or not (30
seconds is suggested as a reasonable time). For the DC Text-Mining Use case
“Find related documents” even shorter response time guarantees seem
reasonable. Otherwise, system should give the user regular progress reports.

Time to transfer a large amount of data will depend on the amount of data to be
transferred (no limit can be placed on this).

Motivation: All use cases.

Page 30/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

4 Objectives – research goals beyond the
scope of the project

In addition to the set of features that should be part of the DataMiningGrid
technology (as defined by requirements in the previous section), there are other
features that would be useful for many use cases. These requirements can be
classified as nice-to-have requirements. These useful, but non-essential
requirements will be addressed by the Consortium if possible, but the Consortium
may decide that there are good reasons for excluding them or leaving them to be
implemented by a later project. Some of these objectives are not fully defined,
and as such need further clarification if they are to be addressed by the
DataMiningGrid© Consortium. Note that the order of the objectives below does
not imply relative priority or degree of consensus.

Functional requirement 15: Provide mechanism for locating computational
services

Rationale: Similar to the data services, the analysis services are also distributed
all over the grid. Since ad-hoc search techniques are inadequate to locate such
distributed services, an automatic mechanism for locating them is needed in
order to find them in a quick, easy, and convenient way.

Initial Assessment: This requires an analysis discovery service. Similar to data
discovery services, analysis discovery services identify analysis services by
matching specified characteristics, attributes, or meta-data such as:

 A description, summary, or overview of the analysis service,
 A description of the input and output data,
 The version of the service,
 Who is the creator, the owner, or the last modifier.

Motivation: All the use cases which will need to locate appropriate
computational service(-s) will benefit from automatic service discovery.

Nonfunctional requirement 6 (supplementary): Data services and tools must be
scalable

Rationale: Scalable means that larger datasets should not take a significantly
longer time to process than just one dataset.

Initial Assessment: Where possible, data should be divided into subsets and
sent to distributed processes. The data can then be processed in parallel and, in
theory, should not take significantly longer than the time it would take one data
subset to be processed on by one process. In practice there will be additional
overheads due to scheduling of processes and distribution of datasets.

Page 31/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Furthermore there may be other bottlenecks, for example if all the data must
pass through a single gateway.

Where data is already distributed, it may be possible to avoid bottlenecks by
transferring the data directly to the distributed process without passing through
the client or a specific service node. However, this raises some technical
problems in how to clean the data and prevent repetitions in the data.

Motivation: All use cases.

Nonfunctional requirement 7 (supplementary): DataMiningGrid services and
tools must be transparent.

Rationale: The end-user should not need to know about or understand the low-
level details of how the technology works. However, users should always be
aware of the possible intricacies of distributed systems, like latency, availability
and reliability (See [Spol00] and [Spol02]).

Initial Assessment: It is assumed that end-users will be conversant with how
to set up data mining workflows. However, the end-user will not necessary be
conversant with the structure of the grid technology that underlies the data
services and tools. Data services should be presented to the user as if it were a
file or any other source of data.

Motivation: All use cases.

Nonfunctional requirement 8 (supplementary): Extensible and “future-
proof”

Rationale: The design of the DataMiningGrid services and tools should be
flexible enough to allow additional functionality to be included without inhibiting
backward compatibility.

Initial Assessment: The key to making a system “future-proof” is simplicity.
For example, a simple set of functions and operations that can be combined to
perform any task are better than a smaller set of functions that require more
arguments and are more likely to require change in the future. If necessary, new
functions can be introduced but these should follow the same principal.

Motivation: All use cases.

Nonfunctional requirement 9 (supplementary): Grid infrastructure allows
interoperability between heterogeneous programming environments and
different operating systems

Page 32/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Rationale: The existing data mining components of the project Partners run on
different operating systems (Linux and Windows) and are written in different and
incompatible programming language. To reduce development time it must be
possible to adopt them to the grid with out having to port them to another
programming environment or operating system.

Initial Assessment: Grid interoperability standards should guarantee this
requirement. It may be necessary to write glue/bridge code in some cases.

Motivation: All use cases.

Nonfunctional requirement 10 (supplementary): Data service interactions
should be kept simple.

Rationale: A complex protocol is more difficult to implement and more likely to
fail. The additional functionality provided by a more complex protocol can often
be achieved by using several simpler commands.

Initial Assessment: A simple text-based language that is both simple and
extensible. Every command has a response in order to confirm the command has
been successfully processed.

Motivation: All use cases.

Page 33/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

5 Conclusions and future work

While investigating the generic data mining requirements of emerging grid-
enabled problem solving environments based on a selected set of representative
application sectors and problem domains, the DataMiningGrid© Consortium aims
to develop algorithms and tools facilitating grid-based data mining services for
future and emerging complex problem solving environments.

The deliverable D11(1) was prepared jointly by the Partners to address some
important requirements for data mining in grid computing environments. As
such, it represents only a subset of the most important requirements that the
Consortium has to address at the beginning of the DataMiningGrid project. More
requirements will certainly arise during the next phases of the project.

Due to the impending data influx in many sectors, the need for data mining is
likely to increase. With the advent of increasingly flexible and powerful grid-
computing infrastructures, it is high time to think of and to instigate the
development of grid-enabled data mining services. Such services would facilitate:

 a dynamic and secure way of accessing, retrieving, and manipulating (join,
subset selection, filtering, etc) data sets from heterogeneous and
distributed sources,

 a dynamic and secure association of these data sets to operations
provided by data mining servers available in a distributed computing
environment, i.e. the grid,

 a dynamic and secure execution of these operations on the data sets,
 a dynamic and secure pipelining of such operations and the resulting

intermediate data sets,
 a dynamic and secure allocation and addition of new data mining services

and operations (servers), new databases and data sets to the grid,
 a highly interactive, intuitive, and secure way for users to define, execute,

monitor, and manage a data mining workflow in such a distributed data
mining environment.

Along with these developments the DataMiningGrid© Consortium shall
demonstrate the deployment of the developed web-based, grid-enabled, data
mining applications, modelling tools and services in a carefully selected sets of
representative application sectors (see Figure 1). The selected applications and
technologies include: re-engineering of gene regulatory networks via distributed
genetic programming, analysis of biological databases for gene/protein
annotation, data mining based monitoring of grid systems (including analysis of
recurring failure and descriptive analysis), distributed text classification and
ontology learning for customer relationship management and quality
management, finding related and similar documents in the intranet, mining of
digital (scientific) libraries, analysis of distributed medical databases for endemic
goitre and iodine deficiency studies, distribution of algorithms for mining of data
in the context of sanitary engineering, and mining of literature databases
(including equation discovery, data check/filtering).

Page 34/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

6 References

[Avaki04] AVAKI at http://www.avaki.com/

[Bax02] Baxter R, A Complete History of the Grid at
www.nesc.ac.uk/talks/sdmiv/SDMIV-25Oct2002- Baxter.pdf

[Condor04] The Condor Project at http://www.cs.wisc.edu/condor/

[Condor-G04] http://www.cs.wisc.edu/condor/condorg/

[Czaj04] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D.
David Snelling and S. Tuecke, "From Open Grid Services Infrastructure to WSResource
Framework: Refactoring & Evolution," http://www-
fp.globus.org/wsrf/OGSI%20to%20WSRF%201.0.pdf , Tech. Rep. 1.0, 12/2/2004, 2004.

[DataGrid04] The DataGrid Project at http://eu-datagrid.web.cern.ch/eu-datagrid/

[Dee90] Deerwester, S. S. & Dumais, T. K.Landauer, G.W. Furnas, and R.~A.
Harshman (1990). Indexing by latent semantic analysis, in: Journal of the American
Society of Information Science, 41(6):391--407, 1990.

[DQP04] www.ogsadai.org.uk/dqp/

[Dub01] Dubitzky, W., Krebs, O., and Eils, R. (2001), ‘Minding, OLAPing, and Mining
Biological Data: Towards a Data Warehousing Concept in Biology’, Proc. Network Tools
and Applications in Biology (NETTAB), CORBA and XML: Towards a Bioinformatics
Integrated Network Environment, Genoa, Italy, pp78-82.

[ELDAS04] www.edikt.org/eldas

[Fer03] Ferreira, L., Jacob, B., Slevin, S., Brown, M., Sundararajan, S., Lepesant, J.,
Bank, J. (2003) Globus Toolkit 3.0 Quick Start
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf

[Fos02] I. Foster, C. Kesselman, J.M. Nick, S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, at
www.gridforum.org/ogsi-wg/drafts/ogsa_draft 2.9_2002-06-22.pdf

[Fos04] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, T. Storey, W. Vambenepe and S. Weerawarana, "Modeling Stateful
Resources with Web Services," http://www-106.ibm.com/developerworks/library/ws-
resource/ws-modelingresources.pdf , Tech. Rep. 1.0, 01/20/2004, 2004.

[Fos99] I. Foster, C. Kesselman, The GRID, Morgan Kaufmann Publishers, Inc., San
Francisco, 1999.

[GGF04] The Global Grid Forum Database Access and Integration Services Working
Group at http://www.gridforum.org/6_DATA/dais.htm

[Globus04] The Globus Alliance at http://www.globus.org/

Page 35/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.avaki.com/
http://www.nesc.ac.uk/talks/sdmiv/SDMIV-25Oct2002- Baxter.pdf
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/condorg/
http://www-fp.globus.org/wsrf/OGSI to WSRF 1.0.pdf
http://www-fp.globus.org/wsrf/OGSI to WSRF 1.0.pdf
http://eu-datagrid.web.cern.ch/eu-datagrid/
http://www.ogsadai.org.uk/dqp/%5d
http://www.edikt.org/eldas
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft 2.9_2002-06-22.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-modelingresources.pdf
http://www.gridforum.org/6_DATA/dais.htm
http://www.globus.org/

Deliverable D11(1)

[Gra97] Ingo Graf and Ulrich Kreßel and Jürgen Franke, Polynomial Classifiers and
Support Vector Machines, 1997, 00 -- 00, Inter. Conf. on Artificial Neural Networks,
Zürich

[Gru93] Gruber, T. R. (1993): Toward principles for the design of ontologies used for
knowledge sharing, in: Formal Analysis in Conceptual Analysis and Knowledge
Representation, Kluwer 1993.

[Hof01] Hofmann, Thomas, Unsupervised learning by probabilistic latent semantic
analysis, in: Machine Learning,42:177--196, 2001.

[Joa98] Joachims, T. (1998). Text categorization with support vector machines:
learning with many relevant features, in: Proceedings of the Tenth European Conference
on Machine Learning (ECML '98), Lecture Notes in Computer Science, Number 1398

[Lan97] Landauer, Thomas K. & Dumais, Susan T. A Solution to Plato's Problem: The
Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of
Knowledge Psychological Review 104 (2): 211--240, 1997.

[Leo02] Edda Leopold & Jörg Kindermann (2002): Text Categorization with Support
Vector Machines. How to Represent Texts in Input Space?; in: Machine Learning 46, pp.
423 - 444.

[Man99] Manning, C. D. & Schütze, H. (1999): Foundations of Statistical Natural
Language Processing, MIT Press: Cambridge MA, London.

[OGSA-DAI04] www.ogsadai.org.uk/docs/current/doc/DAIOverview.html

[Park03] Park, K., and Kanehisa, M. (2003), ‘Prediction of protein subcellular locations
by support vector machines using compositions of amino acids and amino acid pairs’,
Bioinformatics, Vol. 19, pp. 1656-1663.

[Rom02] M. Romberg, “The UNICORE Grid Infrastructure”, Scientific Programming
Special Issue on Grid Computing, 2002, 10, pp. 149-158.

[Sal83] Salton, G.& McGill, M. J. (1983) Introduction to Modern Information Retrieval,
McGraw Hill, New York.

[Spol00] Spolsky Joel; Three Wrong Ideas From Computer Science, August 22, 2000;
www.joelonsoftware.com/articles/fog0000000041.html

[Spol02] Spolsky, Joel; The Law of Leaky Abstractions, November 11, 2002;
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

[Stan04] Stankovski V., May M., Franke J., Schuster A, McCourt D., Dubitzky W., A
Service-Centric Perspective for Data Mining in Complex Problem Solving Environments,
H.R. Arabnia and J. Ni (eds) Proc of Int’l Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'04), Vol II, pp. 780-787, 2004.

[Stork04] www.cs.wisc.edu/condor/stork/papers/stork-icdcs2004.pdf

[Stur03] Sturgeon, B., McCourt, D., Cowper, J., Palmer, F., McClean, S., and Dubitzky,
W. (2003), ‘Can the Grid Help to Solve the Data Integration Problems in Molecular
Biology?’, 3rd International Symposium on Cluster Computing and the Grid (CCGRID
2003) , Tokyo, Japan, pp. 594-600.

Page 36/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.ogsadai.org.uk/docs/current/doc/DAIOverview.html
http://www.joelonsoftware.com/articles/fog0000000041.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.cs.wisc.edu/condor/stork/papers/stork-icdcs2004.pdf

Deliverable D11(1)

[Tom99] M. Tomassi. Parallel and distributed evolutionary algorithms: A review. In K.
Miettinen, M. Makela, P. Neittaanmaki, and J. Periaux, editors, Evolutionary Algorithms in
Engineering and Computer Science, pages 113-133. J. Wiley and Sons, Chichester, 1999.

[Weka04] – Weka Homepage; http://www.cs.waikato.ac.nz/ml/weka/

[Weka99] – Witten, Ian.H, Frank, Eibe; Data Mining Practical Machine Learning Tools
with Java Implementations; Morgan Kaufmann; 1999

Page 37/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.cs.waikato.ac.nz/ml/weka/

Deliverable D11(1)

Appendix A: Applications description

This appendix contains detailed description of applications and data sources
within the DataMiningGrid Consortium. It contains technical requirements for use
of these applications as stand alone applications, what is their input and what is
the output etc. This was prepared, so that the Partners become familiar with the
(tentative) software tools and technologies that shall be used during the project.

UU application farm and data sources

UU will demonstrate two use cases for which the following applications are
considered:

Use case 1: Genetic algorithms for gene regulatory reengineering

The essential aim of the use case is to develop a demonstrator that uses a
parallel evolutionary algorithm approach to evolve gene regulatory networks
from expression time series data on the GRID.

There are three different approaches to parallelize evolutionary algorithms
[Tom99]:

1. Master-Worker model: one master process manages the population and
hands out individuals to evaluate a number of workers. Ideally you have one
worker per individual:

 The master node has to recognize available nodes in the Grid and use
them as workers.

 The master node has to transfer the individual to each worker, execute the
individual (in this case an executable simulation of a gene-regulatory
network) and calculate the fitness.

 After the evaluation, each worker node has to return the fitness value with
the individual’s identification to the master node.

2. Island distributed evolutionary algorithms: Semi-independent groups of
individuals or subpopulations (demes) evolve separately with a loose coupling
to each other:

 An organizer node has to recognize available nodes in the Grid and use
them as deme nodes (demes represent isolated subpopulations).

 Individuals migrate with between demes.
 At regular intervals the organizer node has to be informed about the

development state of each subpopulation (e.g. report best fitness value).

3. Cellular genetic algorithms: Each individual of the population is placed on one
grid-node. The fitness is evaluated simultaneously for all individuals and

Page 38/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

selection, reproduction and mating take place locally within a small
neighbourhood:

 An organizer node has to recognize available nodes in the grid and assign
one individual to each node.

 Synchronization is needed for the fitness evaluation.
 Individuals migrate locally. This requires a spatial mapping of each

individual node within the grid (or the mapping could be implemented in
the organizer node).

If one approach can be implemented then all approaches are possible. However
using a master-worker or a cellular-GA approach makes only sense if the time
consumption of the data transfer is low in relation to the time needed for the
evaluation. Further, a master-worker approach still has all "ugly" properties of a
sequential run i.e. sticking to local maxima would be still a problem. Therefore, it
would be best to start with island distributed evolutionary algorithms (approach
2). If the networks become large and the evaluating the simulations requires
more time, then this approach may be extended by combining island distributed
evolutionary algorithms with the master worker approach (approach 1 with
approach 2).

Software and database requirements:

 A scheduling system like Condor for managing and scheduling distributed
computing jobs,

 In-house Java code for bioinformatics applications,
 Eclipse: this application is the IDE used to develop Java applications. The

technical reasons for using this application are:
o It is free open source software supported by IBM,
o It runs under both Windows and Linux,
o It uses the standard Sun Microsystems software development kit.

 Sun Microsystems SDK: the Sun Microsystems Software Development Kit
provides the compilers and documentations needed to create Java
applications. The technical reasons for using this are:
o The Sun Microsystems SDK is the standard development kit for Java,
o Java is machine independent, and therefore portable,
o A database may not be needed, and even if it is required it will not be

an important element of this use case.

Use case 2: Information integration of life science data: an integrated
approach to protein subcellular localization prediction

This use case is concerned with developing computational methods to accurately
predict the location of proteins within the cell. Such tools are needed in order to
decipher the mass of data being generated by large scale sequencing projects.

It is possible to identify three computational approaches to predicting protein
subcellular localization:

Page 39/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

 Prediction by signal i.e. recognizing protein sorting signals from the
genetic or amino acid sequence,

 Identifying sequence homology to a protein with a known subcellular
location,

 Prediction by content i.e. deviations in the protein amino acid composition
differ for the various subcellular compartments. This approach has lead to
a number of prediction methods based solely on sequence composition
[Park03].

However, there is a considerable need to identify and develop more general and
accurate solutions to protein subcellular localization prediction, and to this end
this use case will integrate databases containing the proteins’ crystal structures
with databases dedicated to understanding and describing their amino acid
sequences. This will enable proteins to be classified by their three dimensional
structure and surface properties, as well as by their amino acid composition.

Software and database requirements:

For our demonstrators we will need to use public bioinformatics databases
(actually databanks):

 Protein Databank (PDB),
 Swiss-Prot.

We will be able to install copies of these databanks on to our own machines.
They supply data as ASCII text files with clear formatting conventions. Oracle is
being considered as the database application for use at UU and in the UU
demonstrators to store sample data. This is because:

 It is well supported by Oracle,
 It is highly flexible and provides an ideal platform for all database needs,
 In order to classify the data we will use decision tree software that is being

developed at UU by Brian Surgeon.

1. EXISTING SOFTWARE FOR DATA SERVICES:

Data services will be required to identify data sources, access them, select
subsets of data from the data sources, construct data sets, and transfer the
resultant dataset around the grid.

Data access and integration is an essential element of all data grids, and a
number of solutions to this problem have been developed by other grid projects.
In order to reduce the development time of the data services work-package
DataMiningGrid will use existing data management solutions where appropriate.
Many of these data-management solutions are still under development and the
developers are keen to gain feedback from anyone using these solutions.
Collaborating with these projects will help to disseminate DataMiningGrid
expertise and aid in the construction of underlying grid technology developed
specifically for data-mining applications.

Page 40/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

A non-exhaustive list of existing data services solutions is given here.

1.1. Spitfire

Spitfire was developed by the EU DataGrid project and provides a set of grid
enabled middleware services for access to relational databases. In order to
provide reliable and simple access to datasets, Spitfire decouples the client
and RDBMS using a mediator. Custom code clients, browsers and command
line tools can read and write over HTTP(S) into any RDBMS. It is a good
system to use for gaining access to SQL databases but other data sources
such as file systems are not supported.

1.2. Stork

Stork [Stork04] has been developed by the Condor project. It is a specialized
scheduler for data placement activities in grid computing. Stork allows data
placement tasks to be queued, scheduled, monitored and managed in a fault
tolerant manner. By interacting with higher level work flow managers such as
the Condor project’s DAGMan, both storage and computational resources can
be scheduled together.

Stork currently has support for:

 Data transfer protocols such as FTP, GridFTP, HTTP, and DiskRouter,
 Data storage protocols such as SRB, UniTree, and NeST,
 Data management middleware such as SRM.

The transfer protocol used to transfer data may be decided at run-time by
using Condor ClassAds to describe all the resources that Stork will be
interacting with. If one transfer protocol fails then Stork can change to
alternative transfer protocols. Stork is also able to allocate and deallocate
space on storage resources using NeST and it can ensure that network links
do not get overloaded.

Although Stork provides a robust solution to data transfer, it has can only
support simple data access facilities, and currently users can only move
around complete files.

Condor-Stork is a robust and mature solution, but it only offers a solution to
the problem of transferring files. It cannot provide access to databases, and it
does not provide any solutions to problems involving data identification or
manipulation.

Although it may be possible to develop additional functionality into Condor-
Stork, it is necessary to ask whether investing resources into grid middleware
development is a priority for the DataMiningGrid, especially when many of
these problems have already been solved by systems such as OGSA-DAI or
Eldas.

1.3. GGF Data services solutions (OGSA-DAI and ELDAS)

Page 41/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

The Data Access and Integration Working Group (DAIS-WG) within the Global
Grid Forum (GGF04) is producing the Grid Data Services Specification
(GDSS). The GDSS defines a Grid Data Service (GDS) standard for accessing
and integrating data stored in multiple types of data storage systems (e.g.
relational databases, XML file systems).

There are two implementations of the GDSS:

 OGSA-DAI,
 ELDAS.

Both of these systems are developed in Scotland at the National e-Science
Centre (NESC), and represent two different architectural approaches to
implementing the DAIS standards.

An email that summarised the differences between the two systems was
provided by Rob Baxter, the software manager for both Eldas and OGSA-DAI,
and it is given here:

 OGSA-DAI is designed for a web container host (tomcat) and Eldas is
designed for an EJB/J2EE host (JBoss in particular),

 OGSA-DAI is dependent on Globus Toolkit 3 but a "pure webservices"
(WS-I) version will be available soon; Eldas already has a "pure
webservices" version and can be installed with no dependence on Globus,

 OGSA-DAI (currently) has richer functionality i.e. activities like data
transformation and compression, enhanced data delivery - while Eldas
(currently) has a greater emphasis on ease-of-installation and use,

 OGSA-DAI is enhancing its usability; Eldas is enriching its functionality.
 OGSA-DAI is open source whereas Eldas (currently) is not.

Whether to use OGSA-DAI or Eldas comes down really to which web
service/Java container architecture you want to use - EJB or non-EJB - and
whether you require open source software. There are plans to develop both
platforms in the future, although for funding reasons the roadmap for OGSA-
DAI is clearer.

1.3.1. OGSA-DAI

The OGSA-DAI [OGSA-DAI04] aims to provide an extension to the Open
Grid Services Architecture (OGSA) specifications in order to allow data
resources to be incorporated within an OGSA framework. OGSA-DAI
components can be used as basic primitives in the creation of
sophisticated higher-level services that offer the capabilities of data
federation and distributed query processing within a Virtual Organization
(VO).

OGSA-DAI is motivated by the need to integrate data sources and
resources into an OGSA-compliant architecture. In particular it is required
to:

Page 42/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

 Obtain information about data that may be distributed amongst several
heterogeneous database environments, and interpret the data held in
databases.

 Locate data that may be distributed, or replicated, over many different
types of databases (relational, XML, some functionality for file systems
etc.), the locations of which may not be known beforehand.

 Integrate different data models from distributed databases.
 Access that data through uniform interfaces.
 Integrate data from various sources to obtain the required information.

These requirements in turn give rise to the following constraints. Any
solution must be able:

 To provide a service for the registration and subsequent discovery of
databases with the required data.

 To support access to these databases and subsequent interactions with
the databases.

 To provide control over the structure of the results, following a
database interaction.

 To provide control over the method and location of data delivery,
following a database interaction.

 To ensure that the type of database interactions and the specified data
transport methods are independent of the type of database and the
data model.

Within OGSA-DAI, grid data services (GDS) are used as interfaces to data
resources; the capabilities of the data resources are determined by the
GDS, and these are published to the service registry. Such capabilities
include information on the resource that a GDS connects to, the database
management system, driver and schema, the type of queries that may be
executed, the format of the resultant data, and the XML schema that
defines the documents (known as GDS-Perform documents) that are past
to and from the GDS.

The GDS-Perform documents specify the actions to be performed on a
data resource (for example an SQL or XML query, or a database update, or
a data transfer for data delivery and receipt) and the data that is extracted
from that data resource. Data can be transformed when it is stored within
the XML of the GDS-Perform document by using XSL (Extensible
Stylesheet Language) Transformations (XSLT).

Both the US (GSF) and Europe (EG) have agreed to agree on standards,
and the future releases of OGSA-DAI will be released in collaboration with
OMII (the Open Middleware Infrastructure Institute).

OGSA-DAI has much more functionality than Stork. Although it can be
more difficult to install, OGSA-DAI provides services for data identification,
data manipulation and data transfer. It can be used with relational
databases, XML or file systems (with more limited data access services),

Page 43/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

and it is able to select subsets of data from these data sources and then
transfer the subset: this can be an advantage when using large files
because Stork, as it is, could only transfer the entire data set. A
requirement that the Data Services work package of the DataMiningGrid
project must be able to meet involves performing SQL joins when
accessing data from databases. OGSA-DAI can be used to integrate
different databases, and apply such SQL statements across the two
databases. It is not clear how functionality like this could be developed in
Condor-Stork without a large commitment of time, resources and risk.

Using OGAS-DAI can reduce development time, and it is becoming a
common solution to grid data-management problems with about 800
registered users worldwide. The OGSA-DAI team now consider the
problems of data access to have been solved and are now focussing more
on problems of data integration and distributed query processing (DQP),
as described below.

DQP: Distributed Query Processing for OGSA-DAI

DQP [DQP04] is a distributed query processor that acts over web and grid
services: it integrates query processing technology with a service-based
grid. DQP extends the OGSA-DAI architecture with two new services - the
Grid Distributed Query Service (GDQS) and the Grid Query Evaluation
Service (GQES). The OGSA-DQP should yield significant programmer
productivity and performance benefits for large-scale data intensive
applications.

Grid Distributed Query Service (GDQS) is a high-level data integration
service that interacts with OGSA-DAI. It combines data analysis with data
access and integration by enabling calls to web services to be incorporated
within a distributed query.

The supported OQL query types include:

 Select, From, Where queries in general
 Limited forms of nested queries
 Some forms of OQL-style aggregation (count, sum, max, min, avg)
 Typed function invocation
 Conjunctive predicates (i.e. connected by the logical AND operator)
 Equality-based join conditions
 Unnesting of collection-typed attributes
 Comparative operators are supported (=, !=, >, <, <=, >=, like)

The transform activities are the same as those supported by OGSA-DAI
and include compression (i.e. zip and gunzip) and transforming data in
XML documents using XSLT.

The following query [from http://www.mygrid.org.uk/] is used as an
example to illustrate the GDQS query submission procedure:

Page 44/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.mygrid.org.uk/

Deliverable D11(1)

select p.ORF, go.id, calculateEntropy(p.sequence)
from p in protein_sequences, go in goterms, pg in protein_goterms
where go.id=pg.GOTermIdentifier and p.ORF=pg.ORF and
p.ORF like "YBL06%" and
go.id like "GO:0000%"

The query contains two separate join operations each joining two tables
from different databases (on different servers) and applies entropy
analysis on protein sequences obtained from one of the tables using a web
service. The calculateEntropy method is an operation defined by an
EntropyAnalyserService. Note that the parameter to this method is a
column from protein sequences table.

The OGSA-DAI team are working with the GridMiner data mining project in
order to help solve the problems of data-integration, and these are being
implemented in DQP

OGSA-DAI has much more functionality than Stork. Although it can be
more difficult to install, OGSA-DAI provides services for data identification,
data manipulation and data transfer. It can be used with databases, XML
or file systems (with more limited data access services), and it is able to
select subsets of data from these data sources and then transfer the
subset: this can be an advantage when using large files because Stork, as
it is, could only transfer the entire data set. A requirement that the Data
Services work package of the DataMiningGrid project must be able to meet
involves performing SQL joins when accessing data from databases.
OGSA-DAI can be used to integrate different databases, and apply such
SQL statements across the two databases. It is not clear how functionality
like this could be developed in Condor-Stork without a large commitment
of time, resources and risk.

1.3.2. ELDAS (Enterprise Level Data Access Services)

Eldas [ELDAS04] is a core Edikt (e-Science Data Information and
Knowledge Transformation) technology and aims to be a commercial
quality software system that has been produced using industrial software
engineering practices. It has been developed using J2EE and Enterprise
Java Bean technologies, and it has adopted industry standard Web
Services.

The Eldas project concentrates more on data integration rather than data
access, and it provides solutions to data federation and performing joins
on data from distributed, heterogeneous data sources. It provides access
to heterogeneous, distributed data sch as Relational Database
Management Systems (RDBMSs), XML databases, ASCII, and binary flat
files (using BinX).

Davy Virdee of the Edikt team email a description of Eldas, and this is
given here:

Page 45/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Eldas is "easy to use and install" - taking minutes to install, rather than hours,
and is streamlined for users who want quick and easy access to databases via
Web or grid services, albeit with constrained functionality: at present Eldas 1.0
allows SQL queries to be passed to MySQL databases. Eldas 1.1 (to be released
late 2004) extends this functionality to allow connection to Oracle, DB2,
SQLServer and Postgress databases; as well GSI message level security for Grid
Services and HTTPS security for web services.

Its conception was originally based on the GDSS specification, but since this is a
moving target, we have diversified slightly. For example, an Eldas Data Service
Factory can connect to many data resources, whereas a Grid Data Service Factory
has a one-to-one mapping with a particular data resource. We did not stick to
"grid services", as we foresaw the emergence of WS-RF. Eldas is based solidly on
Web Services and J2EE technologies, which are industry standards.

Eldas is intended for users who want to set up access to their databases with
minimal effort, and is optimised for performance. One of the applications that
uses Eldas is the EdSkyQuery project, an astronomy data mining project that
handles Giga-bytes of data.

Eldas has been developed by Edikt, which is software engineering project funded
by the Scottish Higher Education Council. Our "mission" is to facilitate Scottish "e-
Science", and to this end, we developed Eldas for use in our applcations projects,
and for general release to the academic and wider community.

FHG application farm and data sources

1. APPLICATIONS:

• Weka [Weka04]
o Current usage:

 Used in many data mining projects as stand-alone application
o Reasons:

 Wide range of data mining algorithms
 Build-in workflow editor
 Widely accepted
 Open source
 Easy to modify (good software design)

o Technical requirements:
 JavaVM 1.4

• Text Mining Tool
o Current usage:

 Used in text mining project with DC
o Reasons:

 Ability to efficiently train & classify large numbers text
documents
 Sophisticated methods for text mining

o Technical requirements:
 JavaVM 1.5
 Fast harddrives
 Min 20GB storage space

Page 46/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

2. DATABASES:

Oracle is being considered as the database application for use at FHG if a
database should be required. The reasons for this choice are:

 It is well supported by the manufacturer and many other companies.
 It is a highly flexible and powerful system providing many extensions and

complying with all relevant standards.

DC application farm and data sources

1. APPLICATIONS

• DC Text Mining Toolbox
o Current usage:

 Used in several internal text mining and information retrieval
projects

o Reasons:
 Provides efficient methods for text classification, clustering

and retrieval
 Developed and used over many years within research

department
o Technical requirements:

 Written in plain C
 Windows 2000/XP environment
 512MB RAM (application and data dependent)
 20GB storage space (application dependent)
 Works with flat files on the filesystem, so no database

technology is needed

2. DATABASES:

• Dpa:
o about 250 classes
o 4 years with about 400.000 texts each
o German
o there is a time stamp with the data, so detecting new topics can be

processed (essential for QNA data)
o short texts, therefore similar to the internal quality data from DC
o combined processing possible with the Wortschatzprojekt

(University of Leipzig) (german texts)
o have to be purchased, FHG ask, whether it is possible to distribute

the data within the DMGrid project

• Reuters (700000 texts)
o there is a time sequence in the data.
o Shorter than the Wipo data, therefore more similar to Dpa data

• Wipo patent data

Page 47/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

o Patent collection of the World Intellectual Property Organization
o Several hundred classes hierarchically organized
o German and English
o 60.000 documents/year

DC internal data includes:

• QNA (quality data)
o about 200 classes
o 80.000 texts/day
o short English texts (ca. 250 bytes)
o Text Mining team at DC asks whether it is possible that FHG can use

the data outside DC (confidential data)
• Internal Patent collection (Derwent Collection)

o Text Mining team at DC asks whether it is possible that FHG can use
the data outside DC (non confidential data, but not free available)

For each of this data there is no underlying database technology. The data is in
flat files.

TECHNION application farm and data sources

APPLICATIONS:

• Weka, as in the farm of FHG.
• Condor

o Current usage: more than 1000 pools around the world.
o Reasons:

 well supported (Annual funding of $5M).
 stable.
 contains data management and batch tools we can use.
 open source.
 easy to modify.
 has versions consistent with Globus, Unicore, others.
 portable across many OS and hardware.

o Technical requirements: ractically nothing special.
• Optional: OGSA-DAI, currently still under study. Not yet clear how stable

and how useful.

Condor [Condor04] is a specialized workload management system for compute-
intensive jobs. Like other full-featured batch systems, Condor provides a job
queuing mechanism, scheduling policy, priority scheme, resource monitoring,
and resource management. Users submit their serial or parallel jobs to Condor,
Condor places them into a queue, chooses when and where to run the jobs based
upon a policy, carefully monitors their progress, and ultimately informs the user
upon completion.

Page 48/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

While providing functionality similar to that of a more traditional batch queuing
system, Condor's novel architecture allows it to succeed in areas where
traditional scheduling systems fail. Condor can be used to manage a cluster of
dedicated compute nodes (such as a "Beowulf" cluster). In addition, unique
mechanisms enable Condor to effectively harness wasted CPU power from
otherwise idle desktop workstations. For instance, Condor can be configured to
only use desktop machines where the keyboard and mouse are idle. Should
Condor detect that a machine is no longer available (such as a key press
detected), in many circumstances Condor is able to transparently produce a
checkpoint and migrate a job to a different machine, which would otherwise be
idle. Condor does not require a shared file system across machines - if no shared
file system is available, Condor can transfer the job's data files on behalf of the
user, or Condor may be able to transparently redirect all the job's I/O requests
back to the submit machine. As a result, Condor can be used to seamlessly
combine all of an organization's computational power into one resource.

Condor-G [Condor-G04] is the job management part of Condor. Condor-G lets
you submit jobs into a queue, have a log detailing the life cycle of your jobs,
manage your input and output files, along with everything else you expect from
a job queuing system. Condor-G gets its name from how it talks to the resource
management part. Instead of using the Condor-developed protocols to start
running a job on a remote machine, Condor-G uses the Globus Toolkit(tm) to
start the job on the remote machine. Condor-G provides a "window to the Grid"
for users to both access resources and manage jobs running on remote
resources. Use Condor-G to look across the Grid and see instantly how your jobs
are doing. You can trust Condor-G to keep watching your jobs while your
attention is elsewhere.

The Condor-G system leverages recent advances in two distinct areas: (1)
security and resource access in multi-domain environments, as supported within
the Globus Toolkit, and (2) management of computation and harnessing of
resources within a single administrative domain, embodied within the Condor
system. Condor-G combines the inter-domain resource management protocols of
the Globus Toolkit and the intra-domain resource and job management methods
of Condor to allow the user to harness multi-domain resources as if they all
belong to one personal domain.

Condor-G provides the grid computing community with a powerful, full-featured
task broker. Used as a front-end to a computational grid, Condor-G can manage
thousands of jobs destined to run at distributed sites. It provides job monitoring,
logging, notification, policy enforcement, fault tolerance, credential management,
and it can handle complex job-interdependencies. Condor-G's flexible and
intuitive commands are appropriate for use directly by end-users, or for
interfacing with higher-level task brokers and web portals.

LJU application farm and data sources

1. APPLICATIONS:

 Automated modelling framework: Lagramge application

Page 49/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

 Applications used for processing medical databases:
o Prodi 5.0 (www.nutri-science.de/de/nutri-science/aktuell/index.htm)
o SPSS 12.0 – statistical programme

http://www.health.state.mo.us/dnhs_pdfs/R_NPE_M5-05_instruct.pdf
o FFQ more information on:http://ffq.fhcrc.org/pdf/msel_sample.pdf, ,

http://www.bus-sante.ch/alim_visu.html,
http://www.abdn.ac.uk/deom/ffq/,
http://www.srl.cam.ac.uk/epic/nutmethod/7dd.shtml,
http://menu.pbrc.edu/ffq/

2. DATABASES

Usual data base technologies, e.g. MS Access, mySQL, Oracle or similar.

Page 50/69 Status: Working Version: 07 Date: 30.Nov.04

http://www.nutri-science.de/de/nutri-science/aktuell/index.htm
http://www.health.state.mo.us/dnhs_pdfs/R_NPE_M5-05_instruct.pdf
http://ffq.fhcrc.org/pdf/msel_sample.pdf
http://www.bus-sante.ch/alim_visu.html
http://www.abdn.ac.uk/deom/ffq/
http://www.srl.cam.ac.uk/epic/nutmethod/7dd.shtml
http://menu.pbrc.edu/ffq/

Deliverable D11(1)

Appendix B: Detailed schematic use cases
descriptions

These use cases were collected from a selected set of real-world applications
from different domains. These applications will be used as demonstrations and
testing of the DataMiningGrid components. More use cases shall be collected by
the end-users group which is currently under formation.

1. UU use cases:
1.1. Identify and select available grid data services

Identifier Identify and select available grid data services

Goals in Context Identifying available grid data services and selecting grid data services.

Actors User, user interface (client-side application), grid middleware, grid data
service registry

Triggers Need to select grid data service

Included Use Cases Data request

Specialised Use
Cases

Pre-conditions • Grid data service registry is known and online
• Grid data service factories have registered with the grid data service

registr
• Grid data services have access to datasets.

Post-conditions

Basic Flow 1. User accesses list of grid data services held in grid data service
registry.

2. Client-side application sends query to grid data service registry
requesting available grid data services and associated metadata.

3. Client-side application displays list of matching grid data services
and associated metadata to user.

4. Client-side application contacts data services to establish their
capabilities.

5. User selects grid data services to use.
6. Client-side application stores grid service handle as part of

workflow.

Deviant Flow(s)
(non-exhaustive)

Failure – Access to grid data service registry is denied, network
communication is down, grid data service registry is not working.
Unable to fulfil request – no grid data services are available.

Importance and
Frequency

Important

Additional
Requirements

Use case 1: Identify and select available grid data services

Page 51/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

1.2. Requesting data from grid data service

Identifier Requesting data from grid data service

Goals in Context Requesting protein data by user from single grid data service

Actors User, user interface (client-side application), grid middleware, grid data
service registry, grid data service, dataset, data consumer

Triggers Need to select data and transfer to data consumer

Included Use Cases Data services: provide data selection and access

Specialised Use
Cases

Pre-conditions • User has access rights to data service
• Client application has grid service handle for grid data service
• Grid data service is accepting requests for grid data service instance.

Post-conditions Data consumer accepts grid data transfer

Basic Flow 1. User initiates compilation and execution of workflow script
containing requests to access grid data

2. Client-side application connects to grid data
3. Client-side application sends a query for data to the grid data

service.
4. The grid data service executes the query and accesses the requested

data
5. The data is formatted into a standard data representation
6. The data is transferred to the data consumer

Deviant Flow(s) Failure – Client-side application is denied access to grid data service,
network communication is down, grid data service is not working
Unable to fulfil request – grid data service is unable to process request
because it is malformed or it requests data that cannot be supplied by grid
data service
Grid data service failure – grid data service is unable to access datasets
containing the data it requires, the datasets are malformed or not working
Data transfer failure – grid data transfer fails because client application
will not accept the data, network communication is down, client
application is not working

Importance and
Frequency

Extremely important – no data means no data mining.

Additional
Requirements

Grid data services workflow templates must be constructed either
manually or using an automated process.

Use case 2: Requesting data from grid data service

Page 52/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Data mining application near data source

Identifier Data mining application near data source

Goals in Context Processing data at the site of the data source

Actors User, user interface (client-side application), grid middleware, compute
job scheduler, a prepared compute job, a data source, grid data service
registry

Triggers Users wants to analyse data sources

Included Use Cases Data mining

Specialised Use
Cases

Data mining at the data source

Pre-conditions • User has logged on to the service registry
• Data sources exist that allow compute jobs to be uploaded and

executed on them
• Grid middleware is available, a scheduler for compute jobs is

available,
• User has read, write and execute permissions on the data source
• User has prepared a compute job that consists of data access,

selection, and processing operation
• Only a single data source is queried.

Post-conditions Processed data can be viewed or transferred to another system of the
Users choice

Basic Flow 1. User selects and identifies a data source that is also a compute
resource

2. User submits a compute job to the scheduler and specifies the
machine that it must run on

3. The compute job is uploaded to the data source by the scheduler
4. The compute job is executed locally on the data source
5. The job can be monitored by the User at any time
6. The user is informed when the job is finished

Deviant Flow(s)
(non-exhaustive)

Failure – access to the data source is denied, execution rights at the data
source are denied, network communication is down, the compute job
scheduler is down, the compute job crashes, compute resources on the
data source are insufficient to execute the compute job

Importance and
Frequency

Important and frequent for some applications, not at all important for
other applications

Additional
Requirements

Use case 3: Data mining application near data source

Page 53/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

2. FHG use cases:
2.1. Finding analysis services

Identifier Finding analysis services

Goals in Context Exporting information about available grid servers and analysis services
offered by them

Actors User, User interface (e.g. Workflow Editor), Administrator, LDAP server
with data stored in it

Triggers Needed by workflow to collect data about servers, offered services and
resources available

Included Use Cases

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server (maybe anonymous bind?)
• User interface knows about data structure
• Information shared by server are prepared by Administrator or

servers are enabled to register automatically on their own

Post-conditions List of all analysis services currently including descriptions of them (e.g.
input data, output data, etc.) available

Basic Flow 1. Server keeps data concerning available analysis services
2. User (or any program) issues search for available services
3. Requested data are returned and presented to user and/or used during

construction of submission scripts

Deviant Flow(s) Failure:

• Server access is denied -> user must provide correct authentication
/ authorization

• Network communication is down -> try again after appropriate
period of time has passed or provide “last known configuration”
to construct workflow chains “offline”

Importance and
Frequency

Extremely important – server is asked by user interface at least once
during every execution

Additional
Requirements

Mechanism of updating available data – manually by server administrator
or by set of automatic scripts

Use case 4: Finding analysis services

Page 54/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Workflow editor

Identifier Workflow editor

Goals in Context Definition of workflow and production of job submission script

Actors User, user interface (client-side application), data source(s), grid-
middleware

Triggers Need to define the actions for a data mining task

Included Use Cases • FindAnalysisServices
• FindDataServices (UU)

Specialised Use
Cases

Pre-conditions • User has local workflow editor
• User has authentication / authorization for data access
• Grid middleware installed on all participating machines

Post-conditions Workflow chain itself and generated workflow script are stored client-side
and/or server-side for later modifications, re-runs, etc.

Basic Flow 1. User starts local workflow editor (client-side)
If (new data mining task)

2. Workflow requests available data and analysis services
3. User defines workflow graphically (selection of data sources, pre-
processing, dm-algorithms)
4. Editor validates workflow chain (logically, access to data sources)
5. Editor produces appropriate script for job submission

Else
6. User loads old workflow
7. Editor validates workflow chain (logically, access to data sources)

End If
8. User saves the workflow on the client and/or the server
9. Transfer of script to a designated server for execution

10. Execution of script on server

Deviant Flow(s)
(non-exhaustive)

Failure:
• Chain incorrect -> User must revise workflow chain
• Data access denied -> User must specify correct authentication /

authorization
• Server not ready -> e.g. restart server

Importance and
Frequency

Extremely important
Workflow editor will be used every time a data mining task is to be
executed.

Additional
Requirements

Use case 5: Workflow editor

Page 55/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

2.2. Pre-process documents for specific classifier

Identifier Preprocess documents for specific classifier

Goals in Context Produce input features for a document classifier/clusterer

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers TrainSpecificClassifier, UseClassifierForSpecificClassAttribute,
ClassifyDocument, ClusterDocuments

Included Use Cases Workflow

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server
• Rquested data can be accessed by server-side scripts
• Gid middleware is available on both sides
• Taining data is available(on server or on client grid computer)
• Optionally: news database has been preprocessed (see use case 61.3-

3)
• Cnversion from server-side data format and the format requested by

the user is available

Post-conditions Requested data are stored on the server in format specified by the user and
are available to download by any GridFTP-enabled application

Basic Flow 13. User logs in to the server by GUI
14. Client-side application lists kind and range of data stored on the

servers
15. User specifies training data on different servers
16. Optionally: User specifies target class.
17. The user specifies a procedure for selecting data (e.g. sampling equal

number of positive/negative examples for a document class).
18. The data is selected, possibly from databases/files on different servers

and stored on these servers.
19. The list of primary terms is extracted on the servers (words, …),
20. Optional: Primary terms are transformed/enhanced by stemming,

stopword omission, ngram generation, character quadgram
generation, syllable generation, chunking, POS-tagging, latents
semantic analysis, ontology lookup on the servers yielding new terms

21. Counts of terms are determined on the servers.
22. Optional. Term lexica are compiled of a specific server.
23. Optional: The relevant terms are selected on the specific server

(feature selection).
24. Optional: New weights for terms are determined on the specific server

(e.g. tfidf).
25. Counts of terms are reweighted on each of the servers.
26. New terms are stored on each server..
27. Optionally status of job can be checked by the User at any time
28. User is informed when the job is finished

Deviant Flow(s) Failure – Server access is denied, network communication is down, grid

Page 56/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

(non-exhaustive) middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 6: Preprocess documents for specific classifier

2.3. Train specific classifier

Identifier Train specific classifier

Goals in Context Produce news stories classifier

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers Use Classifier For Specific Class Attribute, Classify Document

Included Use Cases Workflow, Pre-process Documents For Specific Classifier

Specialised Use
Cases

Pre-conditions • User has the key accepted by the serve
• requested data can be accessed by server-side scripts
• grid middleware is available on both sides
• training data is available(on server or on client grid computer)
• Optional: document collection has been (partially) preprocessed (use

case PreprocessDocumentsForSpecificClassifier)
• conversion from server-side data format and the format requested by

the user is available

Post-conditions Requested data are stored on the server in format specified by the user and
are available to download by any GridFTP-enabled application

Basic Flow 1. User logs in to the server by GUI
2. Client-side application lists kind and range of data stored on the

servers
3. User specifies training data, possibly on different servers
4. The user specifies a procedure for selecting data (e.g. use case

PreprocessDocumentsForSpecificClassifier).
5. Optionally: The selection procedure is specialized to a specific fold

of a cross validation run.
6. For each class the data is selected - possibly from databases/files on

different servers - and sent to a server dedicated to train the specific
classification model (if necessary),

Page 57/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

7. The classifier is estimated on the specific server.
8. Statistics on classifier performance on the training data are

collected and stored.
9. Optional: The classifier output is transformed to a probability.

10. Optional: Estimate classifier performance by cross validation.
11. The classifier data structure is stored in repository together with the

list of primary terms, terms and weights.
12. Optionally status of job can be checked by the User at any time
13. User is informed when the job is finished

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 7: Train specific classifier

2.4. Use classifier for specific class attribute

Identifier Use classifier for specific class attribute

Goals in Context Classify documents

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers

Included Use Cases Workflow, TrainSpecificClassifier, ClassifyDocument

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server
• Requested data can be accessed by server-side scripts
• Grid middleware is available on both sides
• Classification model has been trained
• News database has been preprocessed
• Conversion from server-side data format and the format requested by

the user is available

Post-conditions Requested data are stored on the server in format specified by the user and
are available to download by any GridFTP-enabled application

Basic Flow 1. User logs in to the server by GUI

Page 58/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

2. User specifies unlabelled test data on different servers.
3. The data is selected, possibly from databases/files on different

servers and stored on these servers.
4. The stored pre-processing module and the trained classifier is

transmitted to the servers holding the unlabelled data.
5. The selected data is pre-processed on the servers and derived terms

are stored on the servers.
6. The classifiers is applied and the class probability/score is

calculated on the servers and stored on these servers.
7. Optionally status of job can be checked by the user at any time
8. User is informed when the job is finished

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 8: Use classifier for specific class attribute

2.5. Classify documents

Identifier Classify document

Goals in Context Classify documents

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers UseClassifierForSpecificClassAttribute

Included Use Cases Workflow, TrainSpecificClassifier

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server
• Requested data can be accessed by server-side scripts
• Grid middleware is available on both sides
• Unlabelled test data is available
• Class scores/probabilities for each class attribute have been

determined
• Conversion from server-side data format and the format requested by

the user is available

Page 59/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Post-conditions Requested data are stored on the server in format specified by the user and
are available to download by any GridFTP-enabled application

Basic Flow 1. User logs in to the server by GUI
2. User specifies unlabelled test data with scores/probabilities on

possibly different servers
3. The decision module collects the scores/probabilities for each

document from the servers.
4. The decision module assigns one class, several classes or no class to

each document and optionally computes class probabilities.
5. The assigned classes/probabilities are stored on the specific server

(or the originating servers).
6. Optionally: The results for one or more documents are collected.

Summary statistics and document contents and assigned classes are
visualized on a specific client.

7. Optionally status of job can be checked by the User at any time
8. User is informed when the job is finished

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to acomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 9: Classify documents

2.6. Cluster documents

Identifier Cluster documents

Goals in Context Produce clusters of Documents

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers

Included Use Cases Workflow, PreprocessDocumentsForSpecificClassifier

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server
• Requested data can be accessed by server-side scripts
• Grid middleware is available on both sides
• Training data (unlabeled) is available

Page 60/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

• Conversion from server-side data format and the format requested by
the user is available

Post-conditions Requested data are stored on the server in format specified by the user and
are available to download by any GridFTP-enabled application

Basic Flow 1. User logs in to the server by GUI
2. Client-side application lists kind and range of data stored on the

servers
3. User specifies (unlabeled) training data on different servers.
4. The user specifies a procedure for selecting and preprocessing of

data (e.g. use case PreprocessDocumentsForSpecificClassifier)
5. The data is selected and pre-processed on different servers.
6. The cluster procedure (and possibly the data) is distributed on

suitable servers and one iteration is performed.
7. Cluster processes synchronize on a central server
8. Check on the central server if results are sufficient, else go to 6..
9. The cluster attributes are stored on the central server or with the

documents on the different servers.
10. Optionally: Cluster results are collected on a central client and

visualized with a specific GUI.
11. Optionally status of job can be checked by the User at any time
12. User is informed when the job is finished

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 10: Cluster documents

2.7. Access learned ontology

Identifier Access learned ontology

Goals in Context Access Ontology / Wortschatz

Actors User, Grid middleware, User interface (client-side application), Server-
side scripts, text mining module

Triggers ClusterDocuments

Included Use Cases Workflow

Specialised Use

Page 61/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Cases

Pre-conditions • User has the key accepted by the server
• Requested data can be accessed by server-side scripts
• Grid middleware is available on both sides
• The ontology (i.e. cluster attributes) are stored on the server
• Conversion from server-side data format and the format requested by

the user is available

Post-conditions

Basic Flow 1. User logs in to the server by GUI
2. User specifies query data for the ontology
3. the ontology module collects the requested items on the server
4. the collected data are sent back to the user

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Additional
Requirements

Use case 11: Access learned ontology

3. DC use cases
3.1. Pre-processing distributed document collections

Identifier Pre-processing distributed document collections

Goals in Context Exporting information about available grid servers and services offered by
them

Actors Expert, Administrator, Grid middleware, User interface (client-side
application), Document Servers, Index Server, Server-side scripts, text
mining modules(server-side application)

Triggers Needed by User Interface to collect data about servers, offered services
and resources available

Included Use Cases Data mining: Checking of available grid resources by user interface

Specialised Use
Cases

Pre-conditions • User has the key accepted by the server
• User interface knows about data structure

Page 62/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

• Information shared by server are prepared by Administrator or
servers are enabled to register automatically on their own

• Requested data can be accessed by server-side scripts
• Grid middleware is available on all acting client and server sides
• Optional: Ontology has been learned
• Document collections on document servers have been registered to (cf.

Use Case: Register document server)
• Conversion from server-side data format and the format requested by

the user is available

Post-conditions Requested data are stored on the servers in format specified by the user
and are available to download by any GridFTP-enabled application

Basic Flow 1. User logs in to the server by GUI
2. Client-side application lists kind and range of data stored on the

servers
3. User specifies document collection on different servers
4. Terms to be evaluated (Words, Quadgrams) are determined
5. Optional: Primary terms are transformed/enhanced by stemming,

stopword omission, ngram generation, chunking, POS-tagging, latent
semantic analysis or ontology terms on the specific server yielding
new terms.

6. Counts of terms are determined on each server separately.
7. The term lexica are merged on a specific server
8. The relevant terms (feature selection) are selected on the specific

server.
9. Optional: Counts of terms are reweighted, e.g. by tfidf on each server

separately by the information gained in 8.
10. Inverted files are generated on each server to be accessed by use case

GridWhatsRelatedSearchEngine or the use cases for classification and
clustering

11. Optionally status of job can be checked by the User at any time
12. User is informed when the job is finished

Deviant Flow(s) Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Extremely important – basic use case for the others in T61

Additional
Requirements

Use case 12: Preprocessing distributed document collections

Grid whats related search engine

Page 63/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Identifier Grid whats related search engine

Goals in Context User satisfies information need on distributed technical document
collections, e.g. patents

Actors User, Grid middleware, User interface (client-side application), Document
Servers, Index Server, Server-side scripts, text mining modules(server-side
application)

Triggers Need to choose which of all available data should be prepared and
downloaded by the user or any grid application

Included Use Cases By Preconditions:

• Register document server to GridWhatsRelated

• Pre-process Document collections

• Compute Central Index
By Basic Flow:

• Access Learned Ontology

• Access Wortschatz

• Access Data on the Grid

Specialised Use
Cases

Pre-conditions • User has the key accepted by the Index Server and some or all of the
document servers

• Requested data can be accessed by server-side script
• Grid middleware is available on all acting client and server sides
• Optional: Ontology has been learned
• Document collections on document servers have been registered to

Grid what is related and pre-processed (cf. Use Cases: Register
document server, and: Pre-process Distributed Document collections)

• Central Index on Index Server has been computed (cf. Use Case:
Compute Central Index)

• Conversion from server-side data format and the format requested by
the user is available

Post-conditions User has list of URIs of matching documents/passages with relevancy
values and these documents are accessible by their URI by any GridFTP
enabled application

Basic Flow 1. User logs in to the system by GUI
2. User formulates and inputs query either

a. as list of keywords, or
b. by providing a document in fulltext
c. as URI of a known document from any of the document

servers
d. as URI of a so far unknown document from any accessible

server
3. Query is sent to Index Server
4. Index Server computes on his index which document servers the query

should be sent to (i.e. which document servers could carry matching

Page 64/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

documents) OR computes the set of matching documents (this depends
on the kind of index!!) In the latter case, jump to step 8.

5. Index server distributes the user query to the set of document servers
which come into question and waits for answers

6. Each document server, which receives user query from index server
does:

a. Check, if user has necessary access rights to access this
servers documents

b. If yes to a., query local index and compute ranked result
list consisting of URIs to matching documents/passages

c. Send local result list back to index server
7. Index server collects the local result lists and computes a global

ranking of the result set
8. Index server sends the final result set back to the user’s client.
9. Present the result set to the user in a GUI.

Deviant Flow(s)
(non-exhaustive)

Optional after BF Step 2: Automatic or interactive Query Expansion takes
place by accessing the learned ontology (see Use Case: Access Learned
Ontology) or by querying Wortschatz (see Use Case: Access Wortschatz).
Expanded Query is the input to Step 3.
If successful, optionally after Step 9: User accesses documents given by
result list (see Use Case: Accessing Data on the Grid by URI) OR users
starts over again by taking a document URI from the result list as input to
new query.
Optionally during steps 3 to 8: Status of query job can be checked by the
User at any time OR user is informed in regular intervals on the progress
of the query job
Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – Index server not reachable, requested
data are not stored on the server, data cannot be accessed by server-side
scripts.
Able to accomplish request partially – some of indexed document servers
are reachable, others are not. In this case, Index server should compute a
partial result set and tell user which document servers are unreachable or
unavailable.

Importance and
Frequency

Important
Frequency depends on user’s information need, appears at arbitrary times

Use case 13: Grid what’s related search engine

Page 65/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

TECHNION use cases:

3.2. System diagnosis

Identifier System diagnosis

Goals in Context System functioning improvements via system condition analysis.

Actors • Collector (resource responsible for collecting availability of resources),
• WiseMan (resource responsible for updating the factual availability of

resources),
• Resource (individual node in the network, also referred to as “individual

resource”), and
• Negotiator (resource responsible for submitting jobs).

Triggers Scheduled self-triggering.

Included Use Cases None.

Specialised Use
Cases

None.

Pre-conditions Middleware running with unknown condition.

Post-conditions Complete diagnosis of the system.

Basic Flow 1. Logs are parsed locally on the resources by a component included in
the middleware, and analysed to produce analysed data.

2. Analysed data are pushed from an individual local resource
bottom-up to some other resources where these data are re-analysed
by including analysed data from other individual resources.

3. 2 is repeated moving bottom-up until the WiseMan.
4. WiseMan finalizes the data analyses, and provides the diagnosis of

the system.

Deviant Flow(s)
(non-exhaustive)

None.

Importance and
Frequency

Critical importance.
Frequency is customisable.

Additional
Requirements

None.

Use case 14: System diagnosis

3.3. Data mining workflow generation

Identifier Data mining workflow generation

Goals in Context Executing a data mining workflow design automatically.

Actors • User,
• Distributed Data Sources, and

Page 66/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

• Workflow Generator.

Triggers User who designed a desired data mining workflow wants to execute it.

Included Use Cases None.

Specialised Use
Cases

None.

Pre-conditions • Data mining workflow design completed
• the data mining workflow must comply with the data sources and data

available in a specific network.

Post-conditions The application ready to be executed provided to the user.

Basic Flow 5. The data mining workflow design is submitted to the Workflow
Generator in an internal formalism.

6. The Workflow Generator parses the design, and transforms it into a
series of executable steps. Each step is further transformed into jobs
or commands that can be executed on the specific middleware.

7. The resulting jobs and commands are provided to the user.

Deviant Flow(s)
(non-exhaustive)

The data mining workflow design is not fully compliant with a specific
network due to the lack of knowledge regarding the available data
sources. – The Workflow Generator is required to interact with the user
providing the missing information in order to allow the user to complete
the design.

Importance and
Frequency

Very important.
Launched on demand.

Additional
Requirements

Data mining workflow design provided from the application provided by
FHG.

Use case 15: Data mining workflow generation

4. LJU use cases
4.1. Lake modelling: model induction

Identifier Lake modelling: model induction

Goals in Context Induction of aquatic ecosystem models

Actors User, Grid middleware, User interface (client-side application), Database
Servers

Triggers induction finished/failed

Pre-conditions

Post-conditions models induced and stored in the data base

Basic Flow 1. Transferring the data set to the server data base for storing data sets
2. Transferring the task specification to the server
3. Run application (Lagramge)

Page 67/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

4. Report the results: the equations will be written in form that allows
user to recognise which process models are involved in the model.
The models discovered are stored in a data base of models

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done, user has no rights to access data.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Use case 16: Lake modeling: model induction

4.2. Lake modelling: simulations

Identifier Lake modelling: simulations

Goals in Context Simulation of aquatic ecosystem models

Actors User, Grid middleware, User interface (client-side application), Database
Servers

Triggers simulation finished/failed

Included Use Cases Lake Modelling: induction of models

Pre-conditions • Data set (for initial values of the system variables as well as values of
input/output variables)

• Model
• Compatibility between model and data set: all the model variables

should appear in the model

Post-conditions simulation stored in the data base

Basic Flow 1. User uploads a data set and a model to the server (or choose
existing ones)

2. Run the simulation code
3. Store the results in the data base of data sets

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done, user has no rights to access data.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Page 68/69 Status: Working Version: 07 Date: 30.Nov.04

Deliverable D11(1)

Use case 17: Lake modeling: simulations

4.3. Process medical data in distributed databases

Identifier Process medical data in distributed databases

Goals in Context Analysis of distributed medical databases for endemic goitre and iodine
deficiency studies

Actors User, Grid middleware, User interface (client-side application), grid data
service, grid dataset

Triggers

Included Use Cases Workflow, Requesting data from grid data service

Pre-conditions • User has the key accepted by the server
• Requested data can be accessed by server-side scripts
• Grid middleware is available on both sides
• Conversion from server-side data format and the format requested by

the user is available

Post-conditions Calculated decision tree models are stored in database and are available
to other users.

Basic Flow 1. User logs in to the server by GUI (SECURITY, PRIVACY)
2. User specifies data on different servers.
3. The data is selected, possibly from databases/files on different

servers and stored on these servers.
4. The stored pre-processing (checking for illogical data) module is

transmitted to the servers holding the unlabelled data.
5. The selected data is processed on the servers (with Weka) and

derived results are stored on the servers.
6. Optionally status of job can be checked by the user at any time

Deviant Flow(s)
(non-exhaustive)

Failure – Server access is denied, network communication is down, grid
middleware is not working at any side.
Unable to accomplish request – requested data are not stored on the
server, data cannot be accessed by server-side scripts, data format
conversion cannot be done, user has no rights to access data.
Able to accomplish request partially – some of requested data are
available, but some are not.

Importance and
Frequency

Important

Use case 18: Process medical data in distributed databases

Page 69/69 Status: Working Version: 07 Date: 30.Nov.04

	Introduction
	Grid computing and data grid systems
	State of the art in grid computing
	Research and development challenges
	DataMiningGrid underlying philosophy

	Representative use cases
	Genetic algorithms for gene regulatory reengineering
	Information integration of life science data: an integrated
	Text mining use cases
	Grid monitoring use cases
	Data mining distributed medical databases
	Ecological modelling use cases

	Requirements
	Identifying (locating) DataMiningGrid resources by using met
	Requirements concerning data privacy, security and governanc
	Accessing and selecting data
	Data transfer
	Data (pre-) processing
	Data mining tasks
	Text mining & ontology learning
	Workflow editing and submission
	Requirements concerning integration of domain knowledge
	Grid infrastructure and middleware requirements
	Usability, response times and user-friendliness

	Objectives – research goals beyond the scope of the project
	Conclusions and future work
	References

